Old Dominion University
 ODU Digital Commons

Spring 2010

Towards a Theory of Understanding within Problem Situations

Jose J. Padilla
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds
Part of the Systems Engineering Commons

Recommended Citation

Padilla, Jose J.. "Towards a Theory of Understanding within Problem Situations" (2010). Doctor of Philosophy (PhD), dissertation, Engineering Management, Old Dominion University, DOI: 10.25777/xt4x-v975
https://digitalcommons.odu.edu/emse_etds/104

TOWARDS A THEORY OF UNDERSTANDING WITHIN PROBLEM

SITUATIONS

by

Jose J. Padilla
B.S. Industrial Engineering, June 1997, Universidad Nacional de Colombia M.B.A. International Business, May 2003, Lynn University

> A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY
May 2010

Annroverviny.

Andrles A. Sestsa-Poza (Director)
Andreas Tolks(Member)

> Rafae/E. Landąeta (Member)

Adrian V./Gheorghe (Member)
$\overline{\text { Arturo Tejağ Ruiz (Member) }}$

ABSTRACT
TOWARDS A THEORY OF UNDERSTANDING WITHIN PROBLEM SITUATIONS
Jose J. Padilla
Old Dominion University, 2010
Director: Dr. Andres A. Sosa-Poza

The concept of understanding is ambiguously used across areas of study, such as philosophy and cognitive sciences. This ambiguity partly originates from understanding's generally accepted definition of 'grasping' of something. Further, the concept is confounded with concurrent processes such as learning and decision making. This dissertation provides a general theory of understanding (GTU) that explains the concept of understanding unambiguously and separated from concurrent processes.

The GTU distinguishes between the process of understanding and its outcomes. Understanding, defined as a process, is the matching of knowledge, worldview, and problem. The outcome of this process is the assignment of a truth value to a problem, the generation of knowledge and the generation of worldview. Both accounts say what understanding is and what it does. Additionally, a construct of understanding is proposed to provide insight into the process of understanding. The construct does not only help explain existing theories about understanding, but also adds to the body of knowledge by identifying three types of understanding. Two exist in the literature while the third type is a contribution of this dissertation. Generalizing from the data it is shown how complexity of a problem depends on the effort an individual had to understand. It emerges that effort to understand converges to seven levels.

The theory provides insights in areas of interest to Engineering Management such as complexity and complexity's dependence on the observer while differentiating understanding from concurrent processes such as learning and decision making.

To Alexandra: you are, therefore I am

ACKNOWLEDGMENTS

I once heard that raising a Ph.D. is very much like raising a child; it takes a village.
I would like to thank my advisor, Dr. Andres Avelino Sousa-Poza for sharing his ideas and vision, and making me aware of the risks and satisfactions of doing good research. I also would like to thank my committee members, for each provided a unique contribution to this work. To Dr. Andreas Tolk I am indebted for supporting the modeling and simulation effort at a point of great doubt and for encouraging me to make this work better. To Dr. Rafael Ernesto Landaeta I am indebted for providing the pragmatic worldview needed to keep ideas in perspective. To Dr. Adrian Velicu Gheorghe I am indebted for reminding me that this was a work that needed to contribute to engineering. Finally, to Dr. Arturo Tejada-Ruiz I am indebted for providing the empirical worldview that forced me to think in ways how to relate this research with the observable phenomenon.

I would like to thank the Engineering Management and Systems Engineering Department for supporting my research effort all these years. Thank you Kim Sibson and Peggy Anthony for making my life a lot less complicated when most needed. I would like to thank the good people of the International Students Services at ODU. Special thanks go to Robbin Fulmore, Sara Eser, and Emma Studer for caring and going beyond the call of duty to facilitate a task that is everything but easy. I would like to thank The National Centers for System of Systems and its team, past and present, for being my research home. Thanks Samuel F. Kovacic and David Ekker for always providing a good chat and insightful comments on the early stages of my research. Thank you Dr. Kevin McG. Adams for always providing a good laugh and moral support. Thanks to Behnido Y. Calida for being a great friend, colleague, for helping me with the document, and bearing with my daily constant annoyance; to Van E., Brewer for his great insights and ideas; and to Bradford Logan for being just Brad. Special thanks go to Dr. Charles B. Keating; thank you Chuck for your guidance and for making me participant of the efforts at the center.

I would like to extend special thanks to almost Dr. Saikou Yaya Diallo; brother, I would most definitely not have been able to take this work to the next level if it was not for your help. Kobe and Phil would be very envious of your coaching skills. To my darling Dr. Ipek Raquel-Paulina Bozkurt thanks for not only being my long-time sparring of ideas and a great colleague, but also for being a great friend and personal influence. To Mr. Locutus, thank you for being the personification of two greats: obnoxiousness and heart whose greatnesses are only comparable to one another. I thank Mrs. Locutus for taking care of you for us by being as strangely peculiar as she is. To my friend Carlos Mario Aristizabal, thanks for one day whispering courage to my ear and convincing me that coming to the United States was a good idea. Your ideas, Caliche, should come with a warning (it is a good thing that those ideas are now Ipek's problems). To my dear friend Dr. Heber Alvino Herencia-Zapana, thank you for all our great "discussions" and for making me realize that unicorns exist only metaphorically. To my good friend Elkin Rodriguez-Velasquez, thank you for not letting me pluck my hair out of my skull battling poor data handling and coding. To Dr. Andrew Collins, thank you for your feedback with the model. Your comments went very far.

I am extremely grateful to the families Bedoya-Correa, Parra-Mesa, and GarciaRaskovic. What you have done for me and my family I will never be able to repay. Yaneth, I am thankful because of your stubbornness and constant encouragement I have a Ph.D. today; Leo, thank you for caring for me when I was ill and for providing ideas throughout my dissertation; Bladimir, Nancy, Andres, and Emily thank you for all your prayers. To my "compadre" Hector Manuel; I hope that when I grow up I could be, at the very least, as half as cool as you are. Thanks Marija for your constant support.

To all my friends, near and far, who have made my home everywhere I have gone. To Dr. Pinar Eugenia Ozdural for presenting me the hidden pleasures of cucumber soup and yogurt; to Dr. Gamze Patricia Karayaz for presenting me the quirkiness of white lion's milk, a.k.a. rakı; to Alvaro Corea for always bringing a good bottle of rum; to Dr. John William Branch for always sharing a good beer and a good discussion; to Gloria Stella Salazar for your good vibes; to Claudia Patricia Madrid for your emails of support;
to Roberto Carlos Cabrales for still being close despite the distance; to Fredy Hernan Martinez for being one of my oldest friends; to Fredy Alberto Jaramillo for your contagious sense of humor; to Darwin Botero and Fabian Edgardo Herrera for showing me around when I knew nobody; to Isik Ali Ozcer for stealing Pinar from us; to Billur Andrea Celebi for being our newest Turkish representation; to Gulnihal Bozkurt for those delicious desserts and the annual "Turkish" dinner; to Alihan Antonio, Doha Tatiana, and Onur Francisco for your moral support; to free spirited Ersin Ancel for providing an engineering-fresh-of-breath air perspective to problems; to the greatest baklava baker Berna Eren Tokgoz; to Katherine Sofia Palacio and Luis Gabriel Carvajalino for reminding of my roots and the idiosyncrasies of my land. Thank you all for making my life better and as painless as possible throughout all these years.

To my dear family back home, thank you for bearing the distance and for still being cheerful. One could never ask for better parents, Pepe and Nayade; for better siblings, Nelson Javier, Carlos Gabriel, Juan Nicolas, and Maria Esther, and for better nieces and nephews, Liliana, Angelica, John David, Gabriela, Juan Sebastian, Daniela, and Maria Jose. Thank you Maria Cristina, my dearest cousin, for always sending me pictures of the family. To the late Charro y Santoya, thank you for always believing in me and making me the most loved grandson ever. To Dolly, Rocio, Jose Leonardo, and Sebas, thank you for your love, for always keeping me in mind and for sending me goodies.

To my dogs, Wrinkles Alejandro, Luna Jose, and Red Intenso for always making me laugh, keeping me sane, and providing the little exercise I have had in these years.

To my wife Alexandra Maria, thank you for having the patience of a saint, the sweetness of ripe plantains, and a smile that makes all worries go away.

Thank you Lord because with every challenge came the strength to overcome it and caring friends and family to support me.

TABLE OF CONTENTS

Page
LIST OF TABLES X
LIST OF FIGURES XII
LIST OF DEFINITIONS XV
1 INTRODUCTION 1
1.1 OVERVIEW. 1
1.2 RESEARCH SIGNIFICANCE 2
1.3 PROBLEM STATEMENT AND RESEARCH QUESTION 4
1.4 RESEARCH APPROACH 5
1.5 DISSERTATION ORGANIZATION 8
2 LITERATURE REVIEW 10
2.1 UNDERSTANDING UNDERSTANDING: BACKGROUND RESEARCH 10
2.1.1 INFORMAL DEFINITIONS OF UNDERSTANDING 10
2.1.2 UNDERSTANDING FROM A THEORETICAL PERSPECTIVE 11
2.1.3 UNDERSTANDING FROM AN EXPERIMENTAL PERSPECTIVE 13
2.1.4 UNDERSTANDING FROM A COMPUTATIONAL PERSPECTIVE 15
2.1.5 DISCUSSION ON THE THREE PERSPECTIVES. 18
2.1.6 UNDERSTANDING'S COMMON THEMATIC THREADS 23
2.2 PROBLEM SITUATIONS 24
2.3 SUMMARY OF LITERATURE REVIEW 26
3 DERIVING A CONSTRUCT FOR UNDERSTANDING 28
3.1 ON KNOWLEDGE 28
3.2 ON WORLDVIEW 31
3.3 ON PROBLEM 35
3.4 ON APPROPRIATENESS 38
3.5 IMPLEMENTING THE RESEARCH APPROACH 40
3.6 SUMMARY OF DERIVING A CONSTRUCT FOR UNDERSTANDING 41
4 TOWARDS A GENERAL THEORY OF UNDERSTANDING (GTU) 42
4.1 WORKING DEFINITIONS 42
4.2 THE UNDERSTANDING CONSTRUCT (UC) 48
4.3 THEORY BUILDING FROM THE CONSTRUCT 49
4.4 BUILDING A MODEL AND A SIMULATION 54
4.4.1 SELECTION OF THE M\&S PARADIGM 54
4.4.2 AGENT-BASED MODELING 58
4.4.3 MODEL ANALYSIS 61
4.4.4 MODEL IMPLEMENTATION 70
4.4.5 MODEL SIMULATION 75
4.4.6 MODELING ASSUMPTIONS 77
4.5 DATA ANALYSIS 81
4.5.1 QUALITATIVE ASSESSMENT 83
4.5.2 QUANTITATIVE ANALYSIS 85
4.6 THEORY BUILDING FROM DATA ANALYSIS 100
4.7 SUMMARY OF TOWARDS A GENERAL THEORY OF UNDERSTANDING 104
5 DERIVED THEORETICAL IMPLICATIONS 105
5.1 ON UNDERSTANDING 106
5.2 ON SHARED UNDERSTANDING 108
5.3 ON THE ROLE OF UNDERSTANDING IN COMPLEXITY 110
5.4 ON UNDERSTANDING AND CONCURRENT PROCESSES 113
5.5 ON AGENT-BASED MODELING AND SIMULATION 116
5.6 SUMMARY OF DERIVED THEORETICAL IMPLICATIONS 117
6 CONCLUSIONS AND FUTURE WORK 118
REFERENCES 123
APPENDICES 129
A. DESIGN OF EXPERIMENTS - FULL FACTORIAL, 7 FACTORS AT 2 LEVELS $\left(2^{7}\right)$ 130
B. MEANS OF EFFORT FOR WP-K, KW-P, AND KP-W 131
C. MEANS OF TIME FOR WP-K, KW-P, AND KP-W 132
D. DATA ANALYSIS 133
E. NORMALITY TEST (TIME) 176
F. LEVENE AND F TESTS FOR CONDITIONS 1, 13, AND 99 RESPECTIVELY 177
G. TAMHANE'S T2 TEST FOR LEVEL 2 (EFFORT) 178
H. TAMHANE'S T2 TEST EXCLUDING CONDITIONS 3, 15, AND 109 183
I. TAMHANE'S T2 TEST FOR LEVEL 3 (EFFORT). 188
J. TAMHANE'S T2 TEST FOR LEVEL 3 WITHOUT UPPER VALUES (EFFORT) 204
K. TAMHANE'S T2 TEST LEVEL 5 (EFFORT) 210
L. TAMHANE'S T2 TEST FOR LEVEL 6 (EFFORT) 213
M. VARIATION OF WINDOW OF OPPORTUNITY FOR CONDITION 15 230
VITA 231

LIST OF TABLES

Table Page

1. Factors and Levels of DOE 76
2. Kolmogorov-Smirnov Normality Test for WP-K, KW-P, and KP-W (p-values) 84
3. Level 1 Initial Conditions 87
4. Levene Test for Level 1 87
5. F Test for Level 1 88
6. Levene Test for Level 1 (Excluding Condition 111) 89
7. F Test for Level 1 (Excluding Condition 111) 89
8. Kruskal-Wallis Test for Level 1 (Time) 91
9. Mann-Whitney U Test comparing Conditions 45 and 99 (Time) 92
10. Mann-Whitney U Test comparing Conditions 13 and 67 (Time) 93
11. Mann-Whitney U Test comparing Conditions 67 and 99 (Time) 93
12. Mann-Whitney U Test comparing Conditions 79 and 111 (Time) 93
13. Tukey HSD Comparing Condition 99 for KP-W, KW-P and WP-K at Level 1 96
14. Mann-Whitney U comparing Condition 111 for KP-W and KW-P 97
15. Mann-Whitney U Test comparing Condition 111 for KP-W and WP-K 97
16. Mann-Whitney U Test comparing Condition 111 for KW-P and WP-K 97
17. Kruskal-Wallis Test for Condition 67 (Time) 100
18. Kruskal-Wallis Test for Condition 45 (Time) 100
19. Balance of Statements 101
20. Reducing Complexity through Better Understanding 112
21. Level 2 Initial Conditions 133
22. Levene Test for Level 2 (Effort) 134
23. Mann-Whitney U Test comparing Conditions 71 and 103 (Time) 136
24. Mann-Whitney U test comparing Conditions 1 and 3 (Time) 137
25. Mann-Whitney Test comparing Conditions 15 and 71 (Time) 137
26. Mann-Whitney Test Rank Table comparing Conditions 15 and 71 (Time) 137
Table Page
27. Tukey HSD Test Comparing Condition 65 (Effort) 140
28. Tukey HSD Test Comparing Condition 109 (Effort) 140
29. Kruskal-Wallis Test comparing Condition 109 (Time) 140
30. Level 3 Initial Conditions 141
31. Level 4 Initial Conditions 145
32. Tamhane's T2 Test for Level 4 (Effort) 147
33. F Test for Level 4 (Upper Values) 148
34. Tamhane's T2 Test for Normally Distributed Conditions in Level 4 (Time) 150
35. Level 5 Initial Conditions 152
36. Mann-Whitney Test comparing Conditions 12 and 44 at Level 5 (Time) 156
37. Kruskal-Wallis Test for Group 1 at Level 5 (Time) 157
38. Kruskal-Wallis Test for Group 2 at Level 5 (Time) 158
39. Level 6 Initial Conditions 161
40. Level 7 Initial Conditions 167
41. Levene Test for Level 7 (Effort) 168
42. Tukey HSD Comparing Conditions for Level 7 168
43. Kruskal-Wallis Test for Level 7 (Time) 171
44. Tukey Test comparing Condition 8 (Effort) 172
45. Kruskal-Wallis Test comparing Condition 56 (Time) 173
46. Kruskal-Wallis's Rank Table comparing Condition 56 (Time) 174
47. Mann-Whitney Test comparing KP-W and KW-P for Condition 56 (Time) 174

LIST OF FIGURES

Figure Page

1. Understanding as a Common Thread in Engineering Management 4
2. Research Approach 6
3. Rationalist/Inductive Methodology (Adapted from Sousa-Poza et al., 2008). 8
4. Components of Understanding 24
5. Literature Review 27
6. Review on Knowledge 28
7. Review on Worldview 32
8. Review on Problem 36
9. Implementing the Research Approach 41
10. Glass Box with Observable Structure and Behavior 44
11. Black Box with Observable Behavior 45
12. The Black Box of Understanding 47
13. The Understanding Construct 48
14. Matching of Knowledge, Worldview, and Problem 49
15. M\&S Spectrum for Engineering (Adapted from Hester \& Tolk, 2010) 56
16. A Basic Agent Structure (Adapted from Russel \& Norvig, 2003, p. 33) 58
17. Agent Architectural Frame (Adapted from Tolk \& Uhrmacher, 2009) 59
18. The Systems Engineering Process (Adapted from DAU, 2001) 63
19. Constructs of the Model of Understanding 65
20. Class Diagram of the Model of Understanding. 65
21. State Diagram for the Model of Understanding 66
22. Activity Diagram for the Model of Understanding 67
23. Agent-based Class Diagram for the Model of Understanding 68
24. Sequence Diagram for the Model of Understanding 69
25. Diagram of a simple agent (Adapted from Russel \& Norvig, 2003, p. 47) 72
26. Interface of the ABM for the Model of Understanding 74
Figure Page
27. Means Comparison for WP-K, KW-P and KP-W (Effort) 82
28. Means Comparison for WP-K, KW-P and KP-W (Time). 82
29. Levels 1, 2, 3, and 4 (Effort) 85
30. Levels 5 and 6 (Effort) 86
31. Level 7 (Effort) 86
32. Plot of Means for Level 1 (Effort) 88
33. Plot of Means for Level 1 (Time) 91
34. Comparison of Means of KP-W, KW-P, and WP-K at Level 1 (Effort) 94
35. Comparison of Means for KP-W, KW-P, and WP-K at Level 1 (Time) 99
36. Comparison of Means for KP-W, KW-P, and WP-K at Level 1 (Scaled 1) 99
37. Contribution of General Theory of Understanding to BOK 104
38. Theoretical Implications of the GTU 105
39. Plot of Means Level 2 (Effort) 134
40. Plot of Means for Level 2 (Time) 136
41. Comparison of Means for KP-W, KW-P, and WP-K at Level 2 (Effort) 138
42. Comparison of Means for KP-W, KW-P, and WP-K at Level 2 (Time) 139
43. Plot of Means for Level 3 (Effort) 143
44. Plot of Means for Level 3 (Time) 143
45. Comparison of Means for KP-W, KW-P, and WP-K at Level 3 (Effort) 144
46. Comparison of Means for KP-W, KW-P, and WP-K at Level 3 (Time) 145
47. Plot of Means for Level 4 (Effort) 146
48. Plot of Means for Level 4 (Time) 149
49. Comparison of Means of KP-W, KW-P, and WP-K at Level 4 (Effort) 151
50. Comparison of Means for KP-W, KW-P, and WP-K at Level 4 (Time) 151
51. Plot of Means for Level 5 (Effort) 154
52. Plot of Means for Level 5 (Time). 156
53. Plot of Means for KW-P at Level 5 (Time) 157
54. Comparison of Means for KP-W, KW-P, and WP-K at Level 5 (Effort) 159
Figure Page
55. Comparison of Means for KP-W, KW-P, and WP-K at Level 5 (Time) 160
56. Plot of Means for Level 6 (Effort) 163
57. Plot of Means for KW-P at Level 6 (Time) 164
58. Comparison of Means for KP-W, KW-P, and WP-K at Level 6 (Effort) 165
59. Comparison of Means for KP-W, KW-P, and WP-K at Level 6 (Time) 165
60. Plot of Means for Level 7 (Effort) 169
61. Plot of Means for Level 7 (Time) 170
62. Plot of Means for KW-P at Level 7 (Time) 171
63. Comparison of Means for KP-W, KW-P, and WP-K at Level 7 (Effort) 172
64. Comparison of Means for KP-W, KW-P, and WP-K at Level 7 (Time) 173
65. WO for Condition 15, from 5 to 160 Time Units. 175

LIST OF DEFINITIONS

Definition Page

1. Knowledge 42
2. Problem 42
3. Worldview 42
4. Alpha Statement 44
5. Beta Statement 44
6. Process of Understanding 46
7. Output of Understanding 46

1 INTRODUCTION

1.1 OVERVIEW

The concept of understanding, although widely used across domains, is described differently depending on the area of study. Further, these descriptions, in the majority of cases, are based on the informal dictionary definition of 'grasping' something. This variety of informal descriptions leads to three problems. First, descriptions do not amount to a definition of the concept. Understanding needs to be defined for what it is and not for what it does. Second, different descriptions of the term have generated ambiguity in its use. This ambiguity leads to the concept being confounded with closely related and concurrent processes such as learning and decision making. Finally, these descriptions are built under the assumption than an objectively defined and bounded problem can be formulated. This assumption breaks down when dealing with subjectively defined problems which are common in disciplines such as Engineering Management and Systems Engineering or Modeling and Simulation (M\&S) .

In order to provide an unambiguous definition of the concept, a general theory of understanding (GTU), from the perspective of an individual, is provided. This theory is not only consistent with the state of the art but also differentiates understanding from learning and decision making.

Furthermore, the GTU distinguishes between the process of understanding and its outcomes. Understanding, defined as a process, is the matching of knowledge, worldview, and problem. The outcome of this process is the assignment of a truth value to a problem, the generation of knowledge and the generation of worldview.

At the core of the GTU is the Understanding Construct (UC). The UC is a conceptualization (model) formed by the triple of knowledge, worldview, and problem and their possible interactions. Through the UC, the GTU identifies three types of understanding. The first, and most common is understanding of knowledge based on the application of knowledge. The second type of understanding refers to understanding
a problem based on knowledge formulation. The third type is understanding a problem through problem formulation. The first two types of understanding are found in the literature as two schools of thought. These two schools of thought do not acknowledge the existence of one another and abide by the objectivity assumption. The third type was discovered based on the UC proposed in this research.

The UC paired with proposed definitions were used to build a simulation. Simulation is used to generate data and draw insight that contributes to the GTU. Insight shows that the mismatch of knowledge, worldview, and problem amount to the effort an individual requires to understand a problem. Further, effort to understand, from different individuals, converges to seven different levels. Given that some individuals require more effort to understand a problem, effort can be considered as a subjective measure of complexity.

1.2 RESEARCH SIGNIFICANCE

Understanding, according to Franklin (1981), is one of the few terms so widely employed that as a word, we understand it, yet it is so little examined in contemporary English-speaking philosophy. Nickerson (1985) contends that a fundamental limitation on our ability to assess understanding stems from the difficulty we encounter in trying to define the concept in a satisfactory manner. Nickerson states that until any definition is developed, researchers are going to have difficulties even establishing methodologies to determine the degree of understanding attained in a particular instance.

De Regt and Dieks (2005) state that if the epistemic aim of science is to generate factual knowledge of natural phenomena; the epistemic aim of understanding is to be able to use that knowledge, in the form of theories, to derive predictions and descriptions of the phenomenon. In other words, the importance of understanding to science relies on the ability to use the theories one possesses.

Based on Franklin (1981), Nickerson (1985), and De Regt and Dieks (2005) accounts, the study of the concept of understanding has major implications on any area where the concept is used. Moreover, its impact on science is also of major
consequence when referring to the use of theories. However, its significance to Engineering Management (EM) needs to be established.

A definition of what EM is or does as a discipline is still being formed. Lannes (2001) explains that EM is a twofold discipline focusing on managing engineering projects and applying engineering to management. Kotnour and Farr (2005) describe EM as a bridge between engineering and management. This bridge has, according to Kotnour and Farr, five core processes: strategic management, project management, systems engineering, knowledge management, and change management. There are areas of interest that are common to EM's core processes. Some of the most important areas of interest for engineering managers are complexity, learning, decision making, and problem solving. Yet, a common factor pervasive in all these areas that is of importance to EM is the concept of understanding.

In the study of complexity, Flood and Carson (1993, p. 24) state that "in general, we associate complexity with anything we find difficult to understand." Klir (1985) concurs with this position and states that "in addition to the common sense characterization of the degree of complexity as the number of interrelated parts, it also has a somewhat subjective connotation since it is related to the ability to understand or cope with the thing under consideration." This dependence on the individual to seeing problems as complex extends to engineering management and systems engineering. This is because in most cases decisions are made by a group of stakeholders.

When it comes to learning, problem solving, and decision making, the concept of understanding is also highlighted by different authors. In terms of learning and decision making, the process of understanding can be considered as the one that benefits the most with learning while contributing to decision making. Sterman (1994) remarks that we use learning to revise our understanding of the world and in so doing we affect the decisions we make. Perkins (1988) supports the idea of action supported by understanding by suggesting that we act out of our understanding of an activity. Nair and Ramnarayan (2000, p. 308) extend this position to problem solving by noting that "the definition of the initial state would reflect the individuals' understanding of the
nature of the problem at the beginning, and the desired end-state would be described as the goal expected to be achieved by solving the problem."

Figure 1 shows how understanding contributes to these core processes by contributing to shared common areas of interest.

Figure 1. Understanding as a Common Thread in Engineering Management

Considering that the concept of understanding is of significance to Engineering Management, the following sub-section presents the proposed problem statement and research question.

1.3 PROBLEM STATEMENT AND RESEARCH QUESTION

The concept of understanding is described differently in varying contexts which is a consequence of the absence of a general theory of understanding. Consequently, a theory of understanding that explains the state of the art and contributes additional insights to the body of knowledge is needed. In order to generate such a theory, the following research question is presented:

What is understanding as it applies to not only objectively defined problems, but also to ill-defined problems?

In order to answer the research question, the following questions are addressed:

- What sub-constructs can be used to create a construct for understanding?
- How do these sub-constructs relate with one another?
- How can the process of understanding be bounded to study it independently from other cognitive processes?

This dissertation will provide:

- A definition of the concept of understanding.
- A construct that allows studying the concept in a structured manner.
- An initial theory of understanding based on the construct.

1.4 RESEARCH APPROACH

The research approach is focused on building theory out of existing theory. To do so, the body of knowledge on the concept of interest is reviewed and common thematic threads are obtained. Some of these threads correspond to underlying concepts that can be used to establish and define constructs to eliminate ambiguities from the body of knowledge. Other underlying concepts correspond to characteristics or conditions of the concept of interest. Underlying constructs and characteristics are put together forming an axiomatic structure which is a theoretical abstraction of the concept of interest. The theoretical abstraction, or meta-construct, is used jointly with proposed definitions to build the theory and explain the phenomenon of interest. Succinctly, the theory must say what the concept of interest is, what it does, and how it does it.

The resulting theory should not only be able to explain the existing concept of interest in the body of knowledge but also be able to generate new insight.

Through Modeling and Simulation (M\&S) structure and formality are established via modeling and computational experimentation. More importantly, simulation
provides data that can be analyzed for patterns showing emergence. Emergence is sought after given that it allows for theory discovery.

The resulting theory is also both the result of theoretical insight from the modeling process and from the experimental process. In other words, the theory should have insight resulting from the abstraction process, insight from the data, or both. The only two requirements of the theory are that it explains existing theory, to establish plausibility, and that it generates new insights to move the body of knowledge forward.

Besides the new insight provided, an important contribution of the theory should be the level of formality introduced by the M\&S process. As Davis, Eisenhardt, and Bingham (2007) remark, simulation enhances theoretical precision while providing superior insight into complex theoretical relationships among constructs especially when empirical limitations exist. Further, they suggest that M\&S can provide an analytically precise means of specifying assumptions. Figure 2 shows the defined approach.

Figure 2. Research Approach

This proposed approach is an enactment of a methodology and method proposed by Sousa-Poza, Padilla, and Bozkurt (2008). In terms of methodology, they suggest theory creation from existing theories in the body of knowledge and not from observations, which makes the approach rationalist. In addition, generalizations from identified patterns in the body of knowledge are made instead of generalizations from observations. This makes the approach inductive. The generalization from existing theories towards theory building makes the underlying methodology rationalist and inductive as they name it. In terms of method, obtained premises from theoretical generalizations are put together in a system of premises where assumptions are made explicit. A structured system of premises is established using modeling. Through simulation, an experimental setting is established and new theory is discovered. This approach is based on the traceability of the resulting theory to the body of knowledge as a form of validation of the theory. If a premise is not found in the literature or drawn from it, it is discarded. This allows for the not inclusion of preconceived ideas and/or misconceptions about the phenomenon of interest. As mentioned, Sousa-Poza et al. 's methodology is grounded on philosophical tenets, reason why it is considered within the proposed approach. In terms of method, Sousa-Poza et al.'s method is consistent with methods provided in the literature (Mitroff, Betz, Pondy, \& Sagasti, 1974; Reiner, 2007; Davis et al., 2007; Gilbert, 2008) that rely on modeling and simulating a phenomenon. However, what the proposed research approach provides is fine-tuning these methods by being more specific about steps and results from those steps while still being grounded methodologically. Figure 3 shows the Rationalist/Inductive Methodology and Method.

METHODOLOGY	METHOD
Exploration \& Selection	lroblem Identification
	Context Identification
	Context Selection
Rationalist Structuration	Madeling Technique Selection
	Madel Development \& Execution
	Testing Rules, Context \& Conditions
Conclusion	Interpretation
	Conclusion

Figure 3. Rationalist/Inductive Methodology (Adapted from Sousa-Poza et al., 2008)

1.5 DISSERTATION ORGANIZATION

The Introduction presented an overview of the dissertation that highlights the problem, the approach, and the proposed solution.

The rest of the dissertation is organized as follows.
Section 2 presents the literature review on understanding which shows that there is no agreed definition of understanding beyond the one reflecting the idea of grasping something or a description of the concept. The review identifies knowledge, worldview, and problem as the main components of understanding, and appropriateness, process/output, time, and degrees of understanding as its main characteristics. Section 2 also shows the importance of disassociating not only understanding from output and process perspectives but also from processes such as learning and problem solving.

Section 3 presents the research approach. The approach relies on methodological and methodical underpinnings. At the methodological level, the research builds on an axiomatic structure based on premises derived from existing theories related to understanding. Methodically, Modeling and Simulation (M\&S) is used to provide a way to make explicit premises and assumptions in a computable form. The model is implemented as an agent-based model and simulated to explore the concept of understanding. The results of the simulation are generalized and incorporated into the
theory. The theory is used to explain understanding as it is found in the body of knowledge and to provide new insights into what understanding is and how it works.

Section 4 presents a review of the constructs of knowledge, worldview, and problem. This review shows that, just as the concept of understanding, these terms are loaded with ambiguity as well. The characteristic of appropriateness is explored based on the literature of areas such as decision making, system of systems engineering, and psychology.

Section 5 proposes definitions for knowledge, worldview, and problem. These definitions serve as the basis to define understanding. Definitions of understanding are the starting point towards a general theory of understanding (GTU). From the three underlying constructs, the Understanding Construct (UC) is built. This construct is used to establish three schools of thought or types of understanding. Two of these types of understanding are found in the body of knowledge, while the third is new.

Section 6 presents implications derived from the GTU. Theoretical and data generated implications for the study of understanding and for Engineering Management are presented.

Section 7 presents conclusions and future work.

2 LITERATURE REVIEW

2.1 UNDERSTANDING UNDERSTANDING: BACKGROUND RESEARCH

2.1.1 INFORMAL DEFINITIONS OF UNDERSTANDING

De Regt and Dieks (2005) remark that, many authors claim that scientific explanations are the means to achieve understanding, but none of them provide an account of what understanding is. Understanding is commonly and informally used in many different contexts and rarely due effort is given to properly define the concept. This informality has led to different uses of the word, all of them correct but insufficient to build a formal definition of the concepts. Some of the many uses of the word understanding are:

- As a verb to highlight a need: to aid students' understanding of scientific explanations (Mayer, 1989).
- As a verb to highlight intelligence: you can probably get a machine to do a task requiring intelligence, but if it does not understand the task, then it is not really intelligent (Klahr, 1973 p. 300).
- As a verb to highlight complexity: in addition to the common sense characterization of degree of complexity as the number of interrelated parts, it also has a somewhat subjective connotation since it is related to the ability to understand or cope with the thing under consideration (Klir, 1985).
- As a noun to highlight the importance of something: designing an appropriate set of command arrangements for coalition peace operations requires a clear understanding of the essential functions to be performed and the qualities desired-the objective criteria for success (Alberts \& Hayes, 1995 p. 83).
- As a noun and as a verb to highlight a purpose: "if understanding is a primary goal of education, an effort to understand understanding would seem to be
an obligation, even if one is convinced that is likely to be only a partially successful effort" (Nickerson, 1985).

The previous usages of the word understanding depart from its dictionary definition. Dictionary (2009) defines understanding as "grasp the idea of." Webster Online (2009) defines understanding as a "mental grasp." These definitions reflect two aspects of understanding: the state of having grasped something and the process of grasping something. These two perspectives are further explored in the following review.

The areas of study of understanding, epistemology, cognitive science and education, and Al are presented as perspectives, namely, theoretical, experimental, and computational respectively.

2.1.2 UNDERSTANDING FROM A THEORETICAL PERSPECTIVE

Zagzebski (2001) sees understanding as the grasping of connections among pieces. She proposes that "understanding is the state of comprehension of nonpropositional structures of reality." This definition suggests that an explanation of what was understood can be seen as an output of understanding. This output is then the state when one has understood. Zagzebski states that understanding does not require knowledge and that falsities contribute more to understanding. Falsity, in her view, accounts for knowledge of abstractions. Given that all abstractions are simplifications and simplifications of reality are not reality then she does not consider them knowledge. This is regardless of how widely accepted those abstractions are. In Zagzebski's case, the use of "falsities" to understand a problem implies understanding those falsities. This is equivalent to saying that one understands about things when one understands falsities about those things.

Through a linguistic analysis, Franklin (1981) looked at the nature of the word understanding from two points: objective and subjective. Objectively, Franklin states that understanding, in the comprehensive sense as he notes it, is the "discernment of
significant structure of a situation." Franklin adds that too much complexity and the structure cannot be grasped and so do not understand; too little and there is insufficient structure to be grasped. Subjectively, Franklin refers to wrongly understanding as an indication of "something like my lack of complete confidence in my information." Whereas the objective perspective refers to the state of understanding as a truthful discernment, the subjective perspective seems to refer to the state of understanding as an erroneous discernment. It is noted that Franklin does not explain what the "comprehension sense of understanding" means.

One issue raised by Franklin (1981) is the truthfulness, or validity, of understanding. Grimm (2008) presents two prevailing cases found in epistemology: the one that considers that understanding as a species of knowledge and the one that does not. This discussion, although focused on differentiating knowledge from understanding, brings the issue whether or not understanding has properties of knowledge; therefore whether or not it has a truth component. Zagzebski (2001) makes the case the truth is not required. Grimm, on the other hand, states that understanding cannot be had in the absence of truth. To this extent, Grimm requires observations of reality to be factive or true which is a requirement of knowledge. If this requirement is transferred to understanding, it suggests that one understands when something is known in the absolute, in other words, one understands problem P when one knows K about P.

The parallel exploration of the nature of understanding and knowledge and the requirement to know K (or falsities) to understand P (or things) is an account of understanding knowledge. This is confirmed by Franklin who states that when comparing knowledge with understanding, these comparisons "greatly illuminate our understanding of knowledge." In other words, when referring to understanding, Franklin, Grimm, and Zagzebski are referring to understanding of knowledge. In this case, know K to understand P is equivalent to understand K to understand P or understanding knowledge to understand a problem.

De Regt and Dieks (2005) further make this case when presenting that scientific understanding of phenomena requires theories to be understood. De Regt and Dieks
state two conditions for scientific understanding: criterion for understanding phenomenon (CUP) and criterion for the intelligibility of theories (CIT). CUP is stated as: A phenomenon P can be understood if a theory T of P exists that is intelligible (and meets the usual logical, methodological and empirical requirements). Intelligibility of theories is addressed by the CTI that is stated thus: a scientific theory T is intelligible for scientists (in context C) if they can recognize qualitatively characteristic consequences of T without performing exact calculations. Both criteria rely on understanding a theory T . This can be phrased as P can be understood if a theory T of P exists and is understood.

2.1.3 UNDERSTANDING FROM AN EXPERIMENTAL PERSPECTIVE

Miyake (1986) does not define what understanding is; however, Miyake presents an experimental setting to capture understanding. This setting is based on the capability to establish what something does and how it does it via a mapping between what is not known about something and what is known. The resulting structure of that mapping is assessed by a framework called the function-mechanism hierarchy (Miyake, 1986). A function refers to the description of the task, the mechanism refers to how the task is done, and hierarchy refers to the need to have identified functions and mechanisms to explain functions and mechanism at a lower level. Miyake describes the process of understanding as the ability to identify functions and hierarchy. Miyake (1986) provides the idea of understanding through the point of view. In this case, she highlights that when one has difficulty understanding a problem, one needs to shift the point of view to solve the problem. This position on the point of view is analytical by nature in the sense that it is based on the objective decomposition of the problem in terms of elements and function among elements within a structure.

Nickerson (1985) does not explicitly provide a definition for understanding but makes an attempt to a definition. Nickerson states that:

Understanding is an active process. It requires the connection of facts, the relating of newly acquired information to what is already known, the
weaving of bits of knowledge into an integrated and cohesive whole. In short, it requires not only having knowledge but also doing something with it.

This definition highlights the idea of grasping something in the form of connecting something foreign (new information) to something familiar to us (knowledge) cohesively. This definition, as Miyake's description, refers to the process of understanding but makes no reference to the state of understanding. Nickerson (1985) takes experimental data from studies of misconceptions in physics for studying understanding. In this case, the setting is made of students who have had formal training in physics who do not understand relatively fundamental principles of projectile motion. He suggests that not only lack of understanding can be studied through the testing and attainment of incorrect answers by students but also that lack of understanding is a function of strong preconceptions and misconceptions.

Perkins (1988) presents that understanding involves knowing how different things relate to one another in a web of relations: what the something is for (thingfunction relation), how it works in various ways (function relations) and where it comes from (cause-effect relation). The relation concept from Perkins is certainly close to the idea of function of Miyake (1986) and of Nickerson's (1985) web-like behavior as the capability of understanding of inferring the behavior of a system based on the causeeffect relationship among its components. Coherence within understanding refers to how something is placed within a web of relations as a measure of adequacy and how they relate to the world outside an organism (Perkins, 1988). This can be seen as equivalent to the concept of cohesiveness presented by Nickerson (1985). However, just as Nickerson states, the idea of coherence is still open to interpretation. In understanding and standards of coherence, Perkins highlights the dependence of understanding on context by providing an example of the importance of standards in poetry and physics. Poetry, Perkins remarks, is full of paradoxes, in the sense of symbolisms, whereas this practice is not acceptable in physics. Physics requires the rigor
of science as standard and leaves little space for interpretation. Poetry, on the other hand, has a subjective standard and leaves plenty of room for personal interpretation. In understanding and generativity, Perkins presents the case when memory may play a deceiving role in understanding; just because one knows does not mean one can apply that knowledge. The need of applying knowledge arises and just knowing the web of relations may not be sufficient. Finally, in understanding and open-endness, Perkins presents the case of the human incapability in knowing all there is to know and all possible relations in certain contexts. A web of relations is limited even as the web grows and the most that can be said is that some things are understood about it adequately for certain purposes. Perkins (1988) provides the idea of a holistic perspective or holistic looking as a way to understanding. Perkins remarks that too much analysis can be counterproductive when understanding art given that the process of appreciating art can be spoiled. However, Perkins does not call for the complete elimination of an analytical perspective when understanding art such as the case of understanding color relations.

Miyake (1986), Nickerson (1985), and Perkins (1988) focus on describing understanding from a problem perspective. However, they are referring to the understanding of knowledge through knowledge application. Further, they rely on a solution to assess understanding. If a solution is provided and the problem is solved, then the evaluator confirms that the person understood the knowledge applied to the problem. Nickerson and Perkins provide the best example. In their examples, a person knows physics when knowledge of physics is properly applied to problems of physics.

2.1.4 UNDERSTANDING FROM A COMPUTATIONAL PERSPECTIVE

According to Klahr (1974) a machine is intelligent if it shows understanding. Creating machines that resemble intelligence, or that show understanding, has been the goal of Artificial Intelligence (AI) since its inception.

Moore and Newell (1974, p. 203) provide a criterion for understanding as: " S understands knowledge K if S uses K whenever appropriate." This criterion contains five
elements: two old, one paradigmatic, one of subjectivity, and one of opportunity. The first old element, presented by Nickerson (1985) and De Regt and Dieks (2005), is the use of knowledge or theories; the second old element, represented by the appropriateness of the use of knowledge which resembles the standard of coherence presented by Perkins (1988); the paradigmatic it refers to understanding a task when knowledge has been understood; the one of subjectivity refers to S; and the one of opportunity refers to the timely application of knowledge or whenever.

The use of knowledge, as suggested, is similar to the idea of connecting newly acquired information to what is already known of Nickerson (1985) and the existence of intelligible theory T of P of De Regt and Dieks (2005). From this it can be said that knowledge is needed to be able to understand a task. The idea of appropriateness refers to how close the task is to the knowledge used suggesting the possibility of partially understanding. The paradigmatic element refers to understanding a task when knowledge is understood. This is key to the Al community where one of the main goals is knowledge representation towards working on a particular task. Moore and Newell (1974) suggest that for a system to understand a process an act of assimilation should take place. This act of assimilation is the construction of maps between structured knowledge of the system and the structure of the task. This process, they present, is what makes the system understand: bringing its relevant knowledge to the task. This position suggests that not only does the task need to be structured but also knowledge has to be structured as well.

In Moore and Newell's account when referring to understanding of S, the idea of subjectivity of De Regt and Dieks (2005) and Perkins is present. This idea reflects a human or computer agent that creates the possibility of different understandings of the same task. Finally, the idea of time or opportunity when Moore and Newell (1974) refer to "whenever" is of importance. It seems that "whenever" reflects a time lapse when understanding is bound to occur which may be a characteristic of the task or a selfimpose condition of the human or computer agent.

Ören, Ghassem-Aghaee, and Yilmaz (2007) present a taxonomy of the word understanding based on the use of the word in different contexts. However, they do not define what understanding is. Instead, they describe the process of understanding based on three conditions. They posit that a system \underline{A} can understand an entity \underline{B} (Entity, Relation, Attribute) if and only if:

- $\underline{\boldsymbol{A}}$ can access $\underline{\boldsymbol{C}}$, a meta-model of $\underline{\boldsymbol{B} s}$ ($\underline{\boldsymbol{C}}$ is the knowledge of $\underline{\boldsymbol{A}}$ about $\underline{\underline{B}}$);
- \underline{A} can analyze and perceive $\underline{\boldsymbol{B}}$ to generate $\underline{\boldsymbol{D}}$ ($\underline{\boldsymbol{D}}$ is a perception of $\underline{\boldsymbol{B}}$ by $\underline{\boldsymbol{A}}$ with respect to \mathbf{C});
- \underline{A} can map relationships between \underline{C} and \underline{D} for existing and non-existing features in \underline{C} and/or \underline{D} to generate result (or product) of understanding process.

These criteria present an account of what understanding is based on the ability of a system to understand. It is, however, the same paradigmatic view of Moore and Newell (1974) in that it focuses on the formulation of knowledge (C being the metamodel of B) assuming a structured task. It differs from Moore and Newell's description in that the mapping is not one between task and knowledge but between a perception of the task and the knowledge base. It can be speculated that this variation is due to today's machine's capability of using sensors. This capability was not as prevalent in 1974 when inputs were inputted directly into a computer. However, if there are different systems with the same knowledge, about the same task, Ören et al. suggest that all perceptions of the task will be the same and more likely the mapping will be the same. This is valid in systems where repeatability and objectivity is desired, but fails when different human agents can have different understandings based on the same task.

Ören et al. (2007) provide insight considering understanding as a process. They identify steps (sub-processes of the overall process) and elements that are part of that process. The basic element mentioned is the knowledge base. The main steps reflect the
capability of accessing a knowledge base, analyzing and perceiving of task (amenable to analysis) plus the capability of generating, storing, and mapping a perception. Finally, Ören et al. (2007) name the output of the process of understanding as result. This result is crucial in understanding because it provides an idea of what understanding does. However, Ören et al. do not expand on this topic.

2.1.5 DISCUSSION ON THE THREE PERSPECTIVES

Franklin (1983), Grimm (2008), and Zagzebski (2001) depart from the definition of understanding as 'grasping,' although they focus on describing understanding from a knowledge perspective. Furthermore, they seem to be referring to the understanding of knowledge to understand a problem. Franklin, for instance, says that a problem is understood when the structure of the problem is known. This requires understanding one's knowledge about the structure. When one's knowledge is understood, then it can be said that the structure is "discerned." Zagzebski's case is equivalent to Franklin's considering that one understands about things when one understands falsities about those things. It is also Grimm's case where truthfulness of understanding is established through the truthfulness of the knowledge used which is equivalent to say one understands about things when one knows how things stand in the world. The three authors focus on the state of understanding as the moment when an explanation is provided or a structure has been discerned.

Miyake (1986), Nickerson (1985), and Perkins (1988) share the common assessment that no major effort has been done towards defining understanding. They focus on describing what understanding entitles. Further, they work under certain conditions or assumptions:

- There exists a bounded and structured problem. The structure of a problem is identifiable and knowable.
- There exists an identifiable sequential process to capture that structure.
- A solution can be formulated and evaluated through action and via feedback assess amount and quality of understanding.
- Most importantly, they all refer to the understanding of knowledge through knowledge application to a problem, in this case, problem solving.

This list, especially the last bullet, reflects a school of thought. This school of thought describes understanding as understanding of knowledge. This paradigm explains the need for a bounded problem with an existing solution. This requirement allows the evaluator to prove that the person being evaluated knows its knowledge and how well it was used. For instance, a person is given a problem in the form of a question: $2+2=$? If the person answers 4, the problem is solved, and it is concluded that the person understood. Yet, what the person understood was the knowledge of addition given how it was used to solve the problem. The three authors also focus on the state of understanding as the moment when a solution to a problem is provided.

It is noted that the schools of thought of understanding-of-knowledge-to-understand-a-problem from the theoretical perspective and understanding-of-knowledge-through-knowledge-application-to-a-problem from the experimental perspective are equivalent in that both reduce to understanding knowledge. In the first case, understanding of knowledge is used to reason about a problem. In the latter case, understanding of knowledge is used to provide a solution. In both cases, knowledge is applied to a problem and when the problem is well-reasoned or solved it is said that the person understood.

Computational researchers, unlike theoretical and experimental ones, focus on identifying criteria that capture the process of understanding. In addition, computational researchers, like their counterparts, do not define understanding.

Moore and Newell (1974) and Ören et al, (2007) refer to understanding when understanding a task when knowledge is structured. This school of thought relies on the idea of an already objectively defined task that displays a structure. It also relies on the idea that knowledge can be structured and that a unique mapping, between knowledge
and task, is possible. In other words, knowledge is already understood and the task is already structured. All that is needed is to map knowledge to a problem. These conditions can be achieved under well-defined and bounded cases, but not under illdefined ones.

Referring back to the $2+2$ example; whereas the previous school of thought wanted to know if the person understood addition, in this school of thought addition is already known. Moreover, it is known that $2+2=4$. What it is then required is to know if the knowledge of addition is properly used in a task or not.

The three perspectives present one major assumption, ambiguous attempts to definitions, and different confounded terms.

The objectivity assumption is common to all three perspectives. The idea that one can objectively establish understanding when a structure of a problem is identified (Franklin, 1981; Miyake, 1986) is prevalent. In Miyake's case, for instance, it is assumed that a function exists and it is the correct one. Similarly, the definition assumes that there is one and only one hierarchy which eliminates other kinds of dependencies between functions and parallel structures. Furthermore, the definition assumes an equivalency of functions and structures. The objectivity assumption leads to correlate difficulty of establishing a structure with complexity. Although there is no denying that something inherently more complex may be more difficult to understand, linking understanding with a structure is deceiving in the sense that complexity may be present in a simple structure. Seemingly simple structures when presenting emergence are more complex than non-emergent large structures. The objectivity assumption also leads to the assumption that it is possible to validate the outcome of the process of understanding. In other words, the process of understanding always yields an explanation that can be validated via comparison with an existing solution or through solving a problem. However, the testing and attainment of correct answers is misleading. This approach, while seeking a way of assessing one's understanding by comparing what was understood to a known solution, does not consider the case where
there is no solution and does not consider that correct answers may be due to either the use of memory or the result of a guess.

A departure from the objectivity assumption was suggested by Perkins (1988) when considering the open-ended, context dependence, and holistic looking of understanding. This departure is echoed by Moore and Newell (1974) premise of human or computer agent that creates the possibility of different understandings of the same task. Both accounts suggest the idea of degree and subjectivity of understanding. Subjectivity in this context deviates from the subjectivity characterization provided by Franklin (1981) in that it is not about wrong understanding, but about incomplete understanding. Incomplete understanding also deviates from the idea of absolute and truthful explanation of reality proposed by Grimm (2008) as this account is based on knowledge. However, despite the departure from the objectivity assumption, the idea of structure still remains. In Perkins' case, the idea is observed when referring to relationships among elements of a phenomenon (relations, coherence, and standard of coherence characteristics). In Moore and Newell case, the idea is observed when they seek to structure knowledge to apply to an already structured task.

Ambiguity in its use has also made difficult the study of understanding. Franklin (1981), Nickerson (1988) and Zagzebski (2001), for instance, provided definitions of understanding. However, they do not elaborate on their definitions or use confusing terms. Franklin's account refers to discernment as it relates to the "comprehension sense to understand." Franklin does not expand on the relation between understanding and comprehension, defined comprehension, or even acknowledge that comprehension is widely used as a synonym of understanding. Comprehension is also part of Zagzebski's account. Like Franklin, there is no definition of comprehension or account on how it relates to understanding. Nickerson's attempt to a definition brings ambiguity as well. He relies on definitions that are open to interpretation, namely knowledge, information, cohesiveness, and the differentiation between newly acquired information and existing knowledge. The notion of a cohesive whole is also ambiguous as the definition does not
specify how to evaluate cohesiveness and most importantly to whom the whole is cohesive.

Confounding terms limits the study of understanding by not differentiating it from concurrent processes. The most common processes are perception, problem solving or decision making, and learning. For instance, computational researchers rely on perception to understand. Although there is no denying that perception is important to capture reality it does not necessarily mean it is part of the understanding process. Ergo, when studying understanding in terms of perception, it cannot be differentiated if insights are about perception or understanding. Franklin (1981) makes the case of confidence on information. Confidence in information is a problem solving issue more than an understanding issue (Tallman, Leik, Gray, \& Stafford, 1993). Miyake says that the process of understanding relies on feedback after action is taken to improve understanding. In the literature, feedback due to action is defined as learning (Sterman, 1994).

This discussion shows that in the literature there are accepted assumptions and preconceptions which have not been challenged. Additionally, an effort to define understanding has not been taken. The main assumption is that that understanding is objective and follows structure. This assumption implies that there are objective ways to objectively evaluate understanding. As mentioned, these assumptions leave out the possibility that understanding can be subjective and unable to be assessed due to the ill nature of problems being understood. A widely held preconception is that that the process of understanding is embedded with other processes. This limits the ability of explaining what understanding is given that one could be referring to learning, for instance, instead of understanding. To compound the mixing of understanding with other processes, there are not accepted definitions of understanding beyond the idea of grasping. Mostly, there are descriptions of understanding and when describing it, not only descriptions of the concept are ambiguous, but the terms used to describe it are also ambiguous.

This discussion also presented the existence of two schools of thought of understanding: one based on understanding knowledge, the other based on understanding a task. Both schools of thought are neither recognized by the disciplines that espouse them nor acknowledged by one another. This leads to ambiguity given that when talking about understanding it is assumed all people involved are talking about the same type of understanding. The schools of thought show that it is not the case.

2.1.6 UNDERSTANDING'S COMMON THEMATIC THREADS

From these schools of thought, common thematic threads are identified. These threads are reflected in components and characteristics of understanding. The identified components of understanding are:

- Knowledge or that used to understand a problem.
- Point of View, or worldview, also used to understand a problem, but its role needs to be explored and differentiated from that of knowledge.
- Problem or that what needs to be understood.

Figure 4 shows the components of knowledge, problem, and worldview and implicitly suggests a relation among them. The way these components are related should reflect the appropriateness of that relation, how they relate should reflect a process, and the result of that relation should reflect what understanding does.

The identified characteristics of understanding are:

- Appropriateness which seems to be a condition for understanding that needs to be explored.
- Process and output as the two perspectives that tell us what understanding is and what it does.
- Timing to understand seems to be an issue which needs to be explored.
- Degree of understanding needs to be explored as well.

Figure 4. Components of Understanding

2.2 PROBLEM SITUATIONS

Problems where the objectivity assumption does not have certain characteristics, among them:

- There are many participants.
- No consensus on the definition of the problem.
- No known solutions.
- The effects of proposed solutions are intractable.

These problems are called problem situations.
When problems are not agreed upon, but still are perceived as problems by some, they are called problem situations. Vennix (1996, p.13) posits the nature of these problems as:

One of the most pervasive characteristics of messy problems is that people hold entirely different views on (a) whether there is a problem, and if they agree there is, (b) what the problem is. In that sense messy problems are quite intangible and as a result various authors have
> suggested that there are no objective problems, only situations defined as problems by people.

Further, given that problem situations don't have an identifiable and unique solution, the process of validating understanding or the evaluation of understanding through the evaluation of a solution is not possible. To further make this case; a paradox is presented:

Paradox 1. Understanding a problem does not depend on the existence of a solution If we start with the premise that understanding the problem is to have a solution and to have a solution is to have understood the problem we reach a tautology that says that understanding depends on understanding or that solutions depend on solutions. Second, if the tautology is accepted, can the following question be evaluated: can you understand that a solution is that there is no solution?

- If we answer yes to the question, at the very least, understanding must have taken place for me to be able to say that no solution was indeed a solution. Further, if a solution is the test case for understanding, then there cannot be no solution. Given that a solution is demanded for me to show that I understood, no solution is not an acceptable solution.
- If the answer to the question is no, then a solution must exist which excludes me from understanding problems that have no solution. In other words, when a solution is demanded and no solution is the solution, we are left with no possibility to understand given that no solution was discarded as the solution.

Given that both no solution and solution can be used to understand a problem, then having a solution is not part of understanding.

This paradox shows that understanding does not depend on a solution in the general case. A solution is part of understanding, if and only if, it always plays a part in
the process. In other words, understanding would not be able to occur without having a solution, which is not the case as previously presented. However, understanding can be validated through a solution in the particular case where there exists a solution, as Miyake (1986) presented it. It is important to note that given that understanding does not depend on the validation of understanding, the only way one might assess understanding is when there is a claim that one understands. Ergo any action, depending on enacting a solution, taken as a consequence of what was claimed to be understood must be validated as a separate process.

Finally, given that the focus of this dissertation is on the individual, the concept of problem situations collapses to a case of problem or no problem. However, if for an individual there is a problem, it is not an objectively defined problem. In other words, even for an individual there is not a unique way of defining the problem. Further, there is not a known solution to assess correctness on what was understood. Having said this, from this point on referring to problem situations implies the presence of more than one individual. Referring to a problem implies the presence of one individual with a problem that has characteristics of problem situations.

2.3 SUMMARY OF LITERATURE REVIEW

This section provides a review of the literature on the concept of understanding. There are three main areas of study, or perspectives, of understanding: theoretical, espoused by studies in epistemology; experimental, espoused by studies in cognitive science and education; and computational, espoused by studies in Al. From these three perspectives, two schools of thought of understanding emerge: understanding of knowledge through the application of knowledge and understanding of a task through structuring knowledge. From these two schools of thought, the use of the term "understanding" is ambiguous and it bears many assumptions. The main assumption is that a problem can be objectively defined and that there exists a solution to assess what was understood. From the two schools of thought common thematic threads are also observed. These thematic threads are in the form of components of understanding -
knowledge, worldview, and problem - and characteristics of understanding appropriateness, process/output, time, and degree. Lastly, the concept of problem situations was used to establish the general case of understanding.

Figure 5 shows a graphical review of section 2 .

Figure 5. Literature Review

3 DERIVING A CONSTRUCT FOR UNDERSTANDING

3.1 ON KNOWLEDGE

Figure 6 shows how the concept of knowledge has been addressed in this review.

Figure 6. Review on Knowledge

Knowledge, as a concept, can be traced back to the ancient Greeks with Plato in 360 BC. In his dialogue, Theaetetus (Plato, 1999), he explores the nature of knowledge. Today, epistemologists still struggle with a definitive definition of knowledge.

Plato defined knowledge as justified true belief (JTB). This definition of knowledge has two key components: truthfulness and justification (J). Truthfulness relies on the idea of an absolute truth on an objective reality. This position requires the idea of an objective reality upon which absolute truth can be established. This is not necessarily attainable in most real life conditions. Justification is also a matter of debate. Franklin (1981) presents that:

Apart from the renewed skeptical doubts as to whether and how adequate justification could ever be achieved; there are challenges to the adequacy of the standard account itself.

In all, these conditions of truthfulness and justification are not necessarily abided by. The difficulty of studying reality forces us to work with models and abstractions of reality. These abstractions are not reality ergo any outcome is not truthful in the epistemological sense, therefore according to epistemologists' position is not knowledge.

Two more contemporary accounts of the definition of knowledge are found in the Knowledge Management (KM) literature. Nonaka and Takeuchi (1995, p. 58) present knowledge as the "dynamic human process of justifying personal belief toward the 'truth'." Nonaka and Takeuchi's definition falls in the category of justifying true beliefs. It was shown that this position presents the difficulty of establishing a standard for justification. El-Diraby and Wang (2005) present a more pragmatic definition of knowledge. They posit that knowledge "consists of facts, truths, and beliefs, perspectives and concepts, judgments and expectations, methodologies and knowhow." This basically says that knowledge is everything in our minds. Possibly this is because in most cases, an individual may not be able to assess what is knowledge or not knowledge.

Pears (1971) presents two challenges of a definition of knowledge. First, he focuses on its recursive nature. Pears (1971, p. 4) posits, "If I know something, I ought to know that I know it, and know that I know that I know it? Where will this stop? Second, Pears (1974, p. 1) asks a question for which he does not provide an answer. He posits:

For instance, what is the opposite of knowledge? Is it simply not knowing something and not even thinking that one knows it, or is it thinking that one knows it when one does not? And, whichever it is, what is not knowing? Is it the mental void that a person feels when he has no idea
what the answer to a question is? Or is it something more positive than this? Perhaps he has an answer, but it may be a false one. Or maybe it is true, but only a lucky guess.

Pears (1971), however, posits an interesting definition for factual knowledge. He remarks that factual knowledge is a statement that cannot be a guess. This definition does not abide by the conditions of JTB, so the requirements of truthfulness and justification are not checked. It just requires knowledge to be stated without guessing. This definition seems to be more in line with El-Diraby and Wang (2005) in that it is pragmatic in nature. Pears' definition also seems to be in line with that of the artificial intelligence (AI) community. From an AI point of view, knowledge is programmed to a computer in a form of statements in a rule base (Rusell \& Norvig, 2003; Negnevitsky, 2005). It is noted from figure 12 that the studies of Al and KM are extensively based on epistemology.

Pears (1971) suggests a characterization of knowledge as factual. This characterization is also found across bodies of knowledge. In the KM community, as presented by Rowley (2000), Nonaka and Takeuchi (1998), and Nonaka, Konno and Toyama (2001), knowledge is seen as explicit and tacit.

Explicit or "codified" knowledge is factual knowledge that can be easily expressed with symbols. Symbols can be represented in written words, drawings, equations, or pictures and can be conveyed in a systematic way (Nonaka et al., 2001; Nonaka \& Takeuchi, 1995; Allee, 1997). At the very moment something is being expressed, it becomes an explicit form of knowledge. Conversely, tacit knowledge is more related to sensorial acquired information, individual perception, intuition, and personal experience (Nonaka et al., 2001; Ford \& Sterman, 1997). It centers on mental models an individual carry internally. Those models can be concepts, images, beliefs, viewpoints, value sets, or guiding principles that help people define their world (Allee, 1997). Sternberg, Wagner, Williams, and Horvarth (1995) remark: "it is called tacit because it is inferred from actions or statements."

The concepts of explicit and tacit knowledge are consistent with declarative and procedural knowledge proposed in psychology by Anderson (Anderson, 1995). Anderson posits:

Declarative knowledge is represented in units called chunks and procedural knowledge is represented in units called production rules. The individual units are created by simple encoding of objects in the environment (chunks) or simple encodings of transformations in the environment (production rules).

Anderson's characterization is widely used in AI (Russel \& Norvig, 2003).
Another perspective on the same discussion is one proposed by Ryle (1949). Ryle characterizes knowledge as knowing that and knowing how. This characterization is consistent with both, declarative/procedural and explicit/tacit knowledge. Knowing that relates to the theoretical context of content and facts while knowing how to the practical knowledge of actually doing things (Franklin, 1981).

It can be seen that a universally accepted definition of knowledge does not exist. This leads to different uses of the terms under different contexts, which leads to ambiguity. The same applies to the characterization, or types, of knowledge. In order to use knowledge as a construct in this work, a definition needs to be presented. The same applies for the characterization of knowledge.

3.2 ON WORLDVIEW

Miyake (1986) and Perkins (1988) made the case of point of view, either analytic or holistic, when referring to understanding. Miyake says that an objectively defined problem must be seen from a different vantage point if difficulty in understanding arises and Perkins mentions holistic understanding as a way to understand art without analysis, seeing something aesthetically and not by its individual components. The way a
problem is viewed/perceived is due to the lens of the observer. This lens is called worldview.

Figure 7 shows how the concept of worldview has been addressed in this review.

Figure 7. Review on Worldview

Worldview has been defined both as a set of values and beliefs and as a frame of reference (F / R). According to Koltko-Rivera (2004):

Worldviews are sets of beliefs and assumptions that describe reality. A given worldview encompasses assumptions about heterogeneous variety of topics, including human nature, the meaning and nature of life, and the composition of the universe itself.

Dake (1991) posits that worldviews "entail deeply held beliefs and values regarding society, its functioning, and its potential fate". Aerts, Apostel, De Moor, Hellemans, Maex, Van Belle, and Van der Veken (1994, p. 9) present world view as "a
system of co-ordinates or a frame of reference in which everything presented to us by our diverse experiences can be placed."

From these definitions it can be established that worldview helps individuals describe reality, and this description of reality assists them processing their surroundings. How reality is described and how individuals learn about it is found in philosophy in the form of ontology and epistemology. Keating (2008) presents that worldview, or weltanschauung, is based on philosophical underpinnings, namely ontological which is concerned with the nature of reality epistemological which is concerned with how knowledge is communicated.

Keating (2008), by presenting worldview as ontological and epistemological, provides a characterization of worldview. This philosophical characterization of worldview is consistent with Bozkurt, Padilla, and Sousa-Poza (2007) and Bozkurt (2009). The difference with the latter two works is that they add a teleological component and the ontological and epistemological spectrums have different ends (Process and Substantive instead of Realism and Nominalism and Empiricism and Rationalism instead of Positivism and Antipostivism respectively). The teleological component is mentioned in Keating (2008) as "the perspective of SoS and drives purposeful decision, action, and interpretation," but it is not described as teleological. An epistemological worldview would show how an individual seeks knowledge or uses knowledge. Nonaka and Takeuchi (1985) suggest that along an epistemological dimension, explicit and tacit knowledge sit at the extremes; in other words, an individual relies on its explicit/tacit knowledge to describe reality. Keating (2008) posits that an ontological worldview shows the individual as part of reality (Nominalism) and external of reality (Realism) when describing reality.

Worldviews have also been studied in psychology, not from the point of view of describing reality as Koltko-Rivera (2004), Drake (2001), and Aerts et al. (1994) present, but in terms of perceiving reality. Carl Jung's theory of psychological traits (Jung, 1968) and its evolution into the Myers-Briggs Type Indicator (MBTI) attempt to capture,
among other things, how individuals perceive reality and how they make decisions. The focus in this case is on ontology.

An ontological worldview show how an individual perceives and explains reality. Rescher (1996) says that a person can see reality as individual elements (substantive reductionist approach) or as a collection of elements (process holistic approach). Leonard, Scholl, and Kowalski (1999), under their scale of perception, describe sensing and intuition as forms of perceiving reality. Leonard et al.'s (1999) definitions of sensing and intuition adhere to Jung's definitions; sensing, "which transmits a physical stimulus to perception", and intuition, "which transmits perception in an unconscious way." Leonard et al. however, propose their own characterization on perception as field dependence/independence. Field dependence "is the ability to separate an object or phenomenon from its environment." An individual with field independence prefer detail and basic relationships when solving problems, whereas a field dependent individual prefers intuitive approaches to solve problems. While field dependent individuals are less inclined to separate objects from the environment, field independent individuals tend to differentiate objects from environment concepts (Leonard et al., 1999). One difficulty with these characterizations is the definition of intuition. Klein (1998) suggests that intuition is the recognition of patterns, or lack thereof, in the surrounding environment without necessarily identifying the underlying structure that generates them. Further, these patterns are identified when the individual is placed in particular contexts. In this sense, given that Nominalism and field dependence depend on an individual immersed in her/his surroundings, intuition must play a role in her/his perception of reality under those conditions.

Research in systems theory, Soft-Systems Methodology (SSM) and system of systems engineering (SoSE), has used the ontological separation of reductionist and holistic as posited by Rescher (1996) as a characterization of worldviews. Reductionism, related to machine-age systems, involves the independent study of fully observable passive parts within a closed system. Holism, on the other hand, involves the
simultaneous and interdependent consideration of parts to study a system (Jackson \& Keys, 1984).

Just as with knowledge, there is no universally accepted definition of worldview. This leads to different uses of the terms under different contexts, which leads to ambiguity. The same applies to the characterization, or types, of worldview. In order to use worldview as a construct in this work, a definition needs to be presented. The same applies for the characterization of worldview.

3.3 ON PROBLEM

Sage (1992, p. 54) defines a problem as "an undesirable situation or unresolved matter that is significant to some individual or group and that the individual or group is desirous of resolving." This account, although simple, is open to ambiguity. This is because there is no description on how to qualify something as undesirable or unresolved besides the inherent need of someone to resolve it. Vennix (1996) remarks that for problems to be considered as such need to be objective and agreed upon. However, in most real life settings where group work is required, most problems encountered by engineers and managers are not agreeable upon. As mentioned in section 2, when problems are not agreed upon but still are perceived as problems by some, they are called problem situations. Problem situation is already a characterization of problems within a group setting. However, for an individual this concept has ramifications; chief among them is that it cannot assume objectivity, on its formulation, and the existence of a known solution that can be readily implemented. Figure 8 shows how the concept of problem has been addressed in this review.

Another characterization of problem is that of soft and hard problems. Flood and Carson (1993) present that the hard school accepts that problems exist and it can be known what the problem is. The soft school, according to Flood and Carson, "accepts plurality in human understanding and interests, rejects the hard view, preferring to assume situations are problematic rather than to accept that problem exist" (Flood \&

Carson, 1993, p. 98). The hard and soft differentiation seems consistent with the objectively defined problem and with problem situations respectively.

Figure 8. Review on Problem

Jackson and Keys (1984) use on their context characterization the hard and soft differentiation. They posit that some problems are solvable while others are manageable depending on the context. Problems within unitary contexts range from simple (mechanical-unitary) to complex (system-unitary) and can be solved. Within this context, problems are dealt with under the objectively-defined problem premise. Problems within pluralist contexts, many perspectives, range from simple (mechanicalpluralist) to wicked (systemic pluralist). When consensus can be reached, mechanicalpluralist problems can be solved. Wicked problems, or messy as referred to by Ackoff (1974), are not only ill-defined, but also a solution's effect is intractable. Systems Engineering, for instance, focuses on solving complex problems when building complex systems. However, these problems can be well defined and solved given their technical
dominance under unitary contexts (Keating, Padilla, and Adams, 2008). On the other hand, soft-systems methodology (SSM) focuses on dealing with wicked problems.

Rittel and Webber (1973), recognized for coining the term wicked problem, identified these type of problems in urban planning. They posit that wicked problems "are a class of social system problems which are ill-formulated, where the conflicting values, and where the ramifications in the whole system are thoroughly confusing." Rittel and Webber also remark:

As distinguishable from problems in the natural sciences which are definable and separable and have solutions that are findable, the problems of governmental planning - especially social and policy planning - are ill-defined.

Rittel and Webber (1973) proposed ten properties to distinguish this type of problem ${ }^{1}$. From the ten characteristics, three points of reference can be drawn:

- The first point refers to formulation of the problem, formulation of the solution, and how these two are intertwined. According to Rittel and Webber, the formulation of the problem is the problem not only because we have as many formulations as people formulating the problem but also because the formulation of the problem is in itself a formulation of a solution. The resulting formulation cannot be tested and its possible effects cannot be foreseen with certainty.
- Second, the differentiation between solution as an input and solution as an output. Rittel and Webber mention the "idea for solving" as well as "inventory of all conceivable solutions" which is different than the formulation of a solution. The former refer to the input one needs to have in order to deal with a wicked problem; in Rittel and Webber's words "an exhaustive inventory of all

[^0]conceivable solutions ahead of time." This inventory is towards the formulation of the problem, not as a final "satisfactory" solution to the problem. That satisfactory solution is the result or output of the formulation process that uses those "conceivable solutions" as inputs. This differentiation is crucial given that known solutions may be implemented without having formulated the problem first which then becomes a trial and error process.

- Last, implementation and traceability of a solution cannot be tested or its effects foreseen with certainty. This leaves the decision maker with little or no capability of learning due to feedback.

Unlike knowledge and worldview, there seems to be a widely accepted definition of problem. This definition suggests that problems are undesirable situations that present a need to take them from point A to a desired point B. However, this definition of problem is open to ambiguous interpretations given that there is no qualifier of what makes a situation as undesirable to an individual. On the characterization of a problem, there seems to be different versions of the same case: objectively defined problems (hard problem, problem found in the natural sciences, unitary context) and problem situations (soft problem, social problem, pluralist context, wicked). Their use is mixed which may lead to ambiguity in their use. In order to use problem as a construct in this work, a definition needs to be presented. The same applies for the characterization of problem.

3.4 ON APPROPRIATENESS

Appropriateness, from the review on understanding, is a reflection on how well knowledge is used. After reviewing that worldview has an effect on problems, it makes sense to suggest that appropriateness is also a reflection on how well worldview is used. For instance, in the body of knowledge it is found that intuition, intuitive perception, intuitive knowledge, and intuitive decision making, is used to deal with problems within particular contexts. Klein (1998) makes this point when firefighters and nurses observe
and solve problems by observing cues about patterns or lack thereof. They are able to solve these problems, Klein suggests, because they have knowledge about patterns. Intuitive knowledge is knowledge about patterns. This knowledge is gained through experience. This type of knowledge, within this review, can be seen as tacit, procedural or knowing-how. In addition, worldview is not only about perception but also about describing or making sense about reality. In this line of thought, an intuitive worldview seems to be the more appropriate to make sense of a problem about patterns which was perceived intuitively. This identification of patterns is also highlighted by Hubler (2005). Hubler mentions that "only if we use a holistic approach, by considering both the bottom-up and the top-down pattern formation process, can we understand the emerging patterns and dynamics." In this case, holism can also be seen as intuitive perception. Further, holism is required to deal with or describe problems that present emergence. This is because the problem cannot be described through its parts.

On the other hand, it has been documented (Jackson \& Keys, 1984; Keating et al. 2008) that problems that are within mechanic-unitary or systemic-unitary contexts can be solved by objectively identifying parts and how they relate to one another. Types of perception and knowledge that seem adequate for this kind of problem is reduction and factual knowledge. A reductionist perception plays a role in the identification of parts, while factual knowledge is used to systematically describe the problem. In addition, reduction is used to describe and deal with the problem as well. This is consistent with Leonard et al.'s (1999) research on field independent individuals. These individuals have the inclination to separate objects from the environment and identification of parts.

This short argument opens a line of discussion about what appropriateness is. In the literature of understanding, appropriateness is suggested as a part of the mapping between knowledge and problem. However, not only this is open to interpretation, but also it does not provide conditions for appropriateness to occur. This argument suggests that appropriateness is about the right kind of knowledge and worldview applied to the problem. Moreover, the application of the "right type" is the condition for the application, of knowledge and worldview, to be considered appropriate. Although
appropriateness can be explained in these terms, it needs to be characterized in order to be used within a construct of understanding. This characterization is dependent on the characterization of knowledge, worldview, and problem.

3.5 IMPLEMENTING THE RESEARCH APPROACH

Figure 9 shows how from the two schools of thought found in the literature of understanding common thematic threads can be obtained. Some of these threads become constructs, namely knowledge, worldview, and problem which are used to build a construct of understanding. This construct of understanding will serve as then basis for a model that later will be executed with a simulation. The other threads, such as appropriateness, are characteristics of the concept should help relate underlying constructs. This axiomatic structure should be used jointly with proposed definitions providing an explanation of the concept of understanding, which should result in a theory. This theory should not only be able to explain existing schools of thought and underlying theories, but also should create new insight. M\&S will be used throughout, and the computational model will be implemented in agents as noted. Data should be gathered and analyzed for insight.

Figure 9. Implementing the Research Approach

3.6 SUMMARY OF DERIVING A CONSTRUCT FOR UNDERSTANDING

This section elaborated on the identified components of understanding, namely, knowledge, worldview, and problem. In addition, the characteristic of appropriateness was also explored. It is shown that, in the body of knowledge, current definitions of knowledge, worldview, and problem are ambiguous or open to interpretation. Further, it is shown that the idea of appropriateness is not explicitly stated, but implicitly used, in the body of knowledge. It is suggested that appropriateness is about the right type of knowledge and worldview to a particular type of problem. It is suggested that definitions for knowledge, worldview, and problem are required to be able to use them to define understanding. In addition, types of knowledge, worldview, and problem need to be characterized as well as appropriateness.

4 TOWARDS A GENERAL THEORY OF UNDERSTANDING (GTU)

4.1 WORKING DEFINITIONS

Definition 1. Knowledge

- Knowledge is a collection of statements that are true or false.

Definition 2. Problem

- A problem is a collection of statements for which the truth value is not known.

Definition 3. Worldview

- Worldview is a collection of statements about statements.

Unlike definitions found in the body of knowledge about these topics, these definitions are precise; they mean one thing and one thing only. This characteristic eliminates ambiguity by stating what each construct is without having to describe the construct or using undefined terms within the definition.

The proposed definitions have one common denominator: statements. A statement is simply an atomically semantic collection of symbols. This means two things: first, symbols by themselves do not carry meaning. Second, a statement does not require another statement to have meaning. Examples of statements are: tomorrow is going to rain, 2+2=4, Peter likes chips. Although 2 and Peter means number two and the name of someone/something respectively, by themselves they do not carry any meaning. The use of statements also means that a statement does not require ambiguous conditions such as justification or undesirability. The only requirement is that it needs be stated. Finally, this common element is of great importance because it allows first, the three constructs to be related to one another and second, each definition is clearly differentiated from one another.

In the case of the definition of knowledge, it does not depend how the statement was justified, if that statement is true, or if it is just a belief. A person needs
to just make a statement that it considers true or false. As it was previously presented, the absoluteness and truthfulness of something may not even be assessed even under scientific conditions. This is particularly true within problem situations where for absolute truth to be established, one needs to know everything about everything, which is not possible. Examples of knowledge are: $2+2=4$ (True), the author's name of this work is Jose (True), and Newton proposed the theory of relativity (False). Notice that knowledge is about the truth value assigned to the statement not about the truthfulness of the statement. In known cases, truthfulness is easy to establish. However, under problem situations it is no longer the case. All that a person can say is that a statement is true or false for that person. As an example, if a person says that Newton proposed the theory of relativity (True), it is indeed true for him/her. In this case, this can be easily refuted given that it is a known fact that Newton did not propose the theory of relativity. If a person says that walls deter illegal entry into the country (True), it may be true for him/her, but it is not trivially refutable or acceptable with known facts.

In the case of the definition of problem, it does not depend on the undesirability of the situation; a person needs to make a statement of what s / he wants to know. Further, this definition is consistent with the definition of problem situations; the moment a person states that s/he does not know something, then it becomes a problem for the person. When statements are compared among people, if they are the same they fall under the category of an objectively defined problem. If they are not, then they fall under the problem situations category. Examples of problems are: 2+2=4 (True or False?), the author's name is Peter (True or False?), and Newton proposed the theory of relativity (True or False?). These are statements for which truth value has yet to be assigned. It is important to note that, based on definition 1 , when truth values are assigned problems become knowledge.

In the case of worldviews, it is not a set of values or a frame of reference. It is both. When making a statement about statements a person presents its values and beliefs reflecting a frame of reference. Notice that worldviews, as being statements
about statements, can be statements about knowledge and statements about problems. In other words, individuals have statements about statements for which an individual has truth values assigned and about statements for which it does not have truth values assigned. An example of a worldview is: because tomorrow is going to rain, Peter would rather stay home. This statement shows Peter's preference that when it rains he avoids going out. It is a statement (S1) about statements (S2) because S1; Peter would rather stay home, is a statement about S2; tomorrow is going to rain.

These definitions address the main constructs. In order to address the characterization of these constructs, as found in the literature, the following definitions are proposed:

Definition 4. Alpha Statement

- An alpha statement is a statement about structure.

Definition 5. Beta Statement

- A beta statement is a statement about behavior.

According to Flood and Carson (1993, p.13), structure "defines the way in which the elements can be related to each other, providing the supporting framework in which processes occur." According to Flood and Carson (1993), behavior is characterized by sequential observations on a system at different times. Further, behavior is derived from the relation between input and output at different times. Figure 10 shows how structure and behavior of a system are observed.

Figure 10. Glass Box with Observable Structure and Behavior

Figure 10 shows a reductionist, linear perspective on structure and behavior. In this case, behavior, the relation between input and output, can be explained through the structure and the structure can be explained through parts and relations among parts. This assumes that a structure is observable and identifiable and that a linear correspondence between structure and behavior can be established. In cases where behavior is more than the observed parts and relations among parts, the behavior is said to be emergent. Now, if instead of a glass box there is a black box, as shown in Figure 11, the structure is not, not even its parts, observable. What is observable are the input and output which represent the behavior on the inside. Behavior, usually sought after, is about patterns (Klein, 1988; Hubler, 2005) or lack thereof (Klein, 1998).

Figure 11. Black Box with Observable Behavior

Using definitions 4 and 5 on definitions 1, 2, and 3: Problem Alpha $\left(P_{a}\right)$ is a collection of statements about structure for which truth value is not known. Conversely, Problem Beta $\left(P_{\beta}\right)$ is a collection of statements about behavior for which truth value is not known. Knowledge Alpha $\left(K_{\alpha}\right)$ is a collection of statements about structure that are true or false. Conversely, Knowledge Beta (K_{β}) is a collection of statements about pattern that are true or false. Finally, Worldview Alpha $\left(W_{\alpha}\right)$ is a collection of Alpha statements about statements, and Worldview Beta $\left(W_{\beta}\right)$ is a collection of Beta statements about statements.

This characterization of knowledge, worldview, and problem is consistent within definitions 1, 2, and 3. More importantly, it reflects the types of knowledge, worldview,
and problem presented in section 4 without the ambiguity. K_{α} and K_{β} reflect the explicit and tacit characterization of knowledge. K_{α} and K_{β} reflect their objective/subjective nature; a structure can be learned, taught, and transferred whereas a behavior is dependent on the conditions where a person is immersed in. W_{α} reflects the reality-as-outside-of-the-individual premise presented by Keating (2008) and field independence presented by Leonard et al. (1999) by stating something about an identifiable contextless structure. W_{β}, on the other hand, reflects the individual-within-reality premise of Keating and field dependence of Leonard et al. (1999) by being able to identify patterns, for instance, which are dependent on context. Finally, P_{α} reflects problems whose behavior is definable by parts and relations among parts. P_{β} reflects problem whose behavior is not definable by parts and relations among parts. They are defined by the behavior itself.

Given definitions 1 to 5 , the definitions of understanding stand thus:

Definition 6. Process of Understanding

- Understanding is the matching of Knowledge, Worldview and Problem.

Definition 7. Output of Understanding

- Understanding is the result of the assignment of a truth value to a problem.

These definitions present what understanding is, from a process and output perspective. This dual perspective was found in the literature as a characteristic of understanding. Definitions 6 and 7 fulfill this characteristic in a precise manner. Further, definition 7 presents what understanding does; it assigns truth values to problems through the matching of knowledge, worldview, and problem. These definitions are a big departure from the intuitive idea of grasping found in the literature and present understanding as the matching of statements generating statements. Further, the nature of the statements being matched is already defined so there is no ambiguity.

Notice that understanding assigns truth values to problems. By definition, a statement with truth values assigned is considered knowledge. Therefore,
understanding is a knowledge creation process. This knowledge creation process is shown in Figure 12.

Figure 12. The Black Box of Understanding

Assuming the black box as the mind of an individual, Knowledge (K), Worldview (W), and Problem (W) are inputs to the black box. Inside the box the matching of K, W, and P occurs. The visible output of this process is when a person says it understood. This occurs when P is assigned a truth value and become $P^{\prime} . P^{\prime}$ is new knowledge. Further, when P is assigned a truth value of True, the person understood. When the assigned value is False, the person did not understand. This suggests that not understanding is still a form of understanding; the person understands that $s / h e$ does not understand.

An explanation, as suggested by Zagzebski (2001), could be considered an output of what was understood. However, an explanation cannot be assessed in the general case. All that can be assessed is a simple yes or no when an individual is asked whether a problem was understood or not. Nevertheless, this explanation is considered an important outcome of the understanding process given that an explanation is a statement about statements. Consequently, understanding is a worldview creation process. This is an important deduction. In the literature there is no description of how worldview is created beyond that it is generated by our surroundings. Understanding is then identified as the process that creates worldview.

It has been defined that understanding is a matching process. This process refers to how understanding occurs. However, a definition is insufficient to elaborate on the process. To shed insight onto the process, a construct of understanding is proposed.

4.2 THE UNDERSTANDING CONSTRUCT (UC)

The understanding construct (UC) is formed by the constructs of knowledge, worldview, and problem. Figure 13 shows the construct.

Figure 13. The Understanding Construct

Figure 13 shows that knowledge is matched to problem (KP), knowledge is matched to worldview (KW), and that worldview is matched to problem (WP). This basically says that an individual can apply a solution to a problem, can formulate knowledge, and can formulate a problem respectively. By knowledge being possibly knowledge of solution, KP is a reflection of a problem solving process. A statement about knowledge is a formulation of knowledge. In this case, KW is a reflection of an individual framing knowledge. Lastly, a statement about problem is a formulation of problem. In this case, WP is a reflection of an individual framing problem. However, KP, KW, and WP do not amount to understanding. When W, P, and K are matched to KP, KW, and WP respectively, based on definition 6, understanding occurs. This is shown in

Figure 14a, Figure 14b, and Figure 14c. It is noted that whereas definition 6 and 7 say what understanding is, and definition 7 presents what understanding does, these matching are accounts of how understanding occurs.

a

b

c

Figure 14. Matching of Knowledge, Worldview, and Problem

4.3 THEORY BUILDING FROM THE CONSTRUCT

In Figure 14a, the matching of KP and W (KP-W) reflects a person understanding a problem through knowledge application. In this case, the person applies its knowledge to a problem assuming that this application can be or explained via structure and/or behavior through a worldview. This explanation amounts to a formulation of a solution. Here, the direct matching of knowledge and problem will allow for understanding of the problem. In other words, K is matched with P first assuming that it will match later with a preconceived W. This preconceived W is already assumed when K and P are matched and confirmed when an explanation is provided.

In Figure 14b, the matching of KW and P (KW-P) reflects a person understanding a problem through knowledge formulation. In this case, the person seeks to formulate, via worldview about structure and/or behavior, her/his knowledge. This formulation will allow him to understand the problem at hand. Here, the person assumes the formulation of the problem is not of importance as long as knowledge is formulated. In other words, P is understood when K and W are matched first and then matched to P.

Finally, in Figure 14c, the matching of WP and K (WP-K) reflects a person understanding a problem through the formulation of the problem. In this case, the person seeks to formulate, via worldview about structure and/or behavior, the problem at hand. This formulation will allow for understanding the problem at hand. Here, the person assumes the formulation of knowledge is not of importance as long as the problem is formulated. In other words, P is understood when P is first matched with W and then matched to K.

These three matching reflect three processes of understanding that are the reflection of three schools of thought.

Two understanding schools of thought (ST) were found in the literature: understanding of knowledge through knowledge application (ST1) and understanding of a task through structuring knowledge (ST2). These schools of thought can be explained by KP-W and KW-P respectively.

ST1 says that an individual can understand a problem or knowledge through the use of knowledge. KP-W reflects these equivalent cases. To understand a problem, knowledge needs to be understood through knowledge being matched to the problem, and a formulation of a solution is presented. This direct matching of knowledge on problem is a form of problem solving whose effect of resulting solution is assumed to be assessable due to a known structured problem. Conversely, to understand knowledge, knowledge needs to be understood through knowledge being matched to a problem and an explanation of knowledge is presented. This direct matching of knowledge on problem is a form of assessment whose explanation should be assessable given that the knowledge being understood is already known and the problem used is already known and structured. It is noted that ST1 assumes a uniquely structured problem; ergo, the worldview is assumed and assumed to be about structure. KP-W eliminates this assumption by considering knowledge and problem about structure and behavior and that either, knowledge or problem, can be formulated through structure or through behavior. In other words, whereas ST1 considers K_{α}, P_{α}, and an embedded W_{α}, KP-W considers $K_{\alpha}, K_{\beta}, P_{\alpha}, P_{\beta}, W_{\alpha}$, and W_{β}.

Examples of understanding when considering $\mathrm{K}_{\alpha}, \mathrm{P}_{\alpha}$, and an embedded W_{α}, are found in the Systems Engineering and problem solving literature. In these cases, through an identifiable structure, objectivity can be established. Moreover, the effectiveness of the solution can be assessed given that it was already defined which is then evidence that the problem was understood. Examples of understanding when considering K_{β}, P_{β}, and W_{β} are found in specialized scenarios such as nursing and firefighting where an individual solves problems based on her/his experiential knowledge. Identification of patterns is used instead of identification of structure under these circumstances. Given that these solutions depend on context, they are considered subjective and rely on the assessment of the individual.

ST2 says that an individual can understand a task through structuring knowledge. KW-P reflects this case when knowledge matches to a worldview (knowledge is formulated through a worldview) before matching to a problem. In addition, it explains ST2 under the assumption that knowledge can be uniquely structured. This case is reflected when considering only K_{α} and W_{α} for a problem assumed to be P_{α}. KW-P eliminates this assumption by considering $\mathrm{K}_{\alpha}, \mathrm{K}_{\beta}, \mathrm{W}_{\alpha}, \mathrm{W}_{\beta}, \mathrm{P}_{\alpha}$, and P_{β}.

KW-P, as mentioned before, is found in the artificial intelligence literature which is interested in how knowledge is formulated, so it can be used intelligently in particular tasks. It is also found during elicitation techniques by answering the question: what do you know that is of use to address a problem?

The understanding construct provides a third school of thought that is not found in the literature. WP-K reflects the case when worldview matches to a problem (problem is formulated through worldview) before matching to knowledge. WP-K is truly the reflection of a problem situation given that even for the same person, the formulation of the problem is subject to change. This change in formulation has an effect on ST1 and St2 given that it changes their understanding based on the assumption of a unique formulation. Further, when considering that the problem can be formulated under W_{α} and W_{β} and then matched to K_{α} or K_{β} the formulation space is even larger.

WP-K is found within the systems thinking and system of systems literature. These bodies of knowledge posit that a unique formulation of socio-technical problems is not possible. Each individual formulation becomes a unique formulation of the world that later must be reconciled. In this case, what was understood is a unique understanding, for a person at a certain point in time.

The understanding construct also provides information about three characteristics mentioned in the literature review: time, appropriateness, degree of understanding.

Time is a condition inherent to the problem or self-imposed by the individual. If time is inherent to the problem and individual may have to meet deadlines. On the other hand, when time is self-imposed by the individual, $s /$ he responds to her/his own deadlines. From these perspectives, time to understand is considered within a window of opportunity (WO), inherent to the problem or self-imposed by the individual, where the time is allotted to understand the problem. However, providing an answer within a WO requires having an idea of how to measure understanding. This measurement is provided by appropriateness.

Appropriateness is better expressed by the following propositions:

- Proposition 1. Understanding occurs when:
- K_{i}, W_{j}, and P_{k} match
- For $i=j=k$.
- Proposition 2. Not-Understanding occurs when:
- K_{i}, W_{j}, and P_{k} match
- For $i=!$! or $i=!$ k or $j=!$ k.

Appropriateness is a condition achieved when knowledge, worldview, and problem of the same type are matched. When an appropriate match occurs, a person understood. A percentage of appropriately matched statements out of the total considered problems, provide a measurement for understanding at a point in time.

Conversely, when statements do not match it also provides a metric. Not-understanding refers to the fact that a person does not understand. This metric can be seen as a counter that updates every time a person says it does not understand. This counter stops when the person assigns to the last problem statement a truth value of true. Succinctly, the result of this counter, effort to understand, is just the sum of all newly assigned statements with the value of false. Effort to understand plays a crucial role in this work, given that from the next section on is the metric used to assess difficulty on understanding a problem.

In terms of effort, other possible metrics provide a way of assessing what was understood. Three possible metrics for understanding are completeness, truthfulness, and misunderstanding.

Completeness is the number of statements with assigned truth values out of the ones that needed assignment. It answers the question: of all defined statements without truth value, how many of those have an assignation? Truthfulness is the number of statements with correctly assigned truth values out of the ones that needed assignment. It answers the question: of all defined statements without truth value, how many of those truth values were correctly assigned? Finally, misunderstanding is the number of statements with wrongly assigned truth values out of the ones that needed assignment. Three notes are made on these metrics: first, they are not independent. They could be affecting each other. For instance, the completeness metric contains measurements of truthfulness and misunderstanding. Second, these metrics can be measured under fairly simple conditions. And third, these metrics help differentiate concepts from one another. For instance, misunderstanding can now be differentiated from lack of understanding; whereas the former relates to wrongly assigned truth values, the latter relates to not-understanding.

Another important characterization is that of being able to understand. Being able to understand is not the same as not-understanding. This differentiation can be established, at the very least, with the following three conditions: existence, capacity, appropriateness, and relevance.

1. Existence: P must exist for it to be understood.
2. Capacity: K and W must exist for P to be understood.
3. Appropriateness: K, W, and P need be of same type when matched.
4. Relevance: K and W are applicable to P.

Being unable to understand means that conditions (1) and (2) are not satisfied. Conversely, not-understanding does not satisfy condition (3). Condition (4) is a safeguard for condition (3) in that, at the very least, K and W are relevant to P.

4.4 BUILDING A MODEL AND A SIMULATION

The UC and corresponding definitions serve as a formal characterization of the GTU. To establish that this formalism is not only consistent but also able to further generate theory, a computable model and corresponding simulation need to be created. The computable model enhances the formality of the GTU while the simulation generates data that can be analyzed for further knowledge creation.

4.4.1 SELECTION OF THE M\&S PARADIGM

The selection of the appropriate M\&S paradigm to the problem at hand is paramount. The proposed research approach assumes that this selection was already made. However, this work requires that the selection be made explicitly in order to establish the required academic rigor.

A model is a representation of a system, entity, phenomenon, or process (Davis \& Anderson, 2003). According to Zeigler et al. in Diallo, Tolk, and Weisel (2007), a model is a system specification, such as a set of instructions, rules, equations, or constraints for generating input/output behavior. A simulation is the execution of a model to replicate its behavior (Zeigler in Diallo et al. 2007). Davis and Anderson (2003) define simulation as the act of using a simulation engine to execute a dynamic model in order to study its representation of the model's behavior over time. Davis et al. (2007) define it as a method that involves creating a computational representation of the underlying
theoretical logic that links constructs together within a world. These representations are then coded into software that is run repeatedly under varying experimental conditions in order to obtain results. This position is consistent with Gilbert and Troitzsch (2005) who present simulation as used as a method of theory development given that we can express theories as procedures in the form of a computer program, which is more precise than the textual form of the procedure, which is helpful in refining the theory.

Dealing with complex phenomena M\&S becomes extremely useful given that it allows the researcher to explore possibilities and test the boundaries of theories in development. According to Davis et al. (2007) simulation has become highly significant as a methodology because not only can it provide superior insight into complex theoretical relationships among constructs especially when empirical limitations exist but also because it can provide an analytically precise means of specifying assumptions. Gilbert (2000) says that simulation is particularly useful when dealing with non-linear relations that are pervasive in the social world, relations that get too complicated to be analytically tractable through mathematical or statistical equations.

This insight into complex theoretical constructs is even more important given that, because of the nature of complexity, we may not even be able to establish causal relationships between action and response, between input and output. This implies that any multiple of perspectives can be equally valid in describing the phenomenon due to multiplicity of outcomes. Each one of these perspectives is necessary and all need to be considered. However, empirically this cannot be done. This is where simulation comes into place; as placing reality as a subset of the perspective, perspectives that now become possible alternatives. This characteristic is of crucial importance in this research given the multiple possible perspectives within a problem situation.

Hester and Tolk (2010) posit that the categorization of M\&S methods depends on "simulation challenges, which means they are predominantly residing on the implementation level." They propose a model spectrum for engineering that ranges from high abstraction models to high resolution models. The former are less detailed and focused on a big picture. In this spectrum they place the most used $M \& S$ paradigms:

System Dynamics (SD), Discrete Event Simulation (DE), and Agent-Based Simulation (ABM). Figure 15 shows the spectrum.

Figure 15. M\&S Spectrum for Engineering (Adapted from Hester \& Tolk, 2010)

According to Gilbert and Troitzsch (2005), systems dynamics is "described using a system of equations which derive the future state of the target system from its actual state." According to Hester and Tolk (2010), SD models are composed of differential equations describing a system. They are unable to handle stochastic parameters and cannot operate in a parallel environment.

Discrete event simulation is a modeling approach based on the concept of entities, resources, and block charts describing entity flow and resource sharing. Entities are passive objects that represent people, parts, messages, etc.; they travel through the blocks of the flowchart where they stay in queues, are delayed, processed, split, etc. (Borshchev \& Filippov, 2004). According to Hester and Tolk (2010), DE can model stochastic systems and can be executed in parallel to reduce computing time.

Agent-based modeling is a "computational method that enables a researcher to create, analyze, and experiment with models composed of agents that interact within an environment" (Gilbert 2008, p. 2). According to Hester and Tolk (2010):

Agents can be programmed to work in a cooperative or competitive manner towards other agents. In particular the characteristics of autonomy and flexibility make them of interest to engineers, as they enable to add human-like behaviors to simulation.

To select the most appropriate modeling paradigm, Hester and Tolk (2010) suggest selecting the lowest resolution possible to model a real world scenario. They remark that this is difficult given the trade-off as simulation complexity increases with increased model resolution.

This work presents modeling challenges, chief among them are:

- There is no equation that describes relation among constructs or a dominant structure to be modeled.
- There is no sequence of events.
- Constructs and premises can be established.

If there are no underlying equations that establish flow rate among objects and underlying structure that shows causality within this work, then systems dynamics is discarded as a candidate for modeling the phenomenon in question. Given that no sequence of events describing entity flow can be established, discrete event simulation is discarded as well. Now, if constructs are seen as agents and premises as underlying rules that explain the behavior of interaction among objects, agent-based modeling becomes the most appropriate paradigm for this work. Hester and Tolk (2010) remark that only ABM can handle dynamic, stochastic, parallel, and continuous problems. This is
appropriate in this work given that no preconceived behavior must be built into the simulation.

4.4.2 AGENT-BASED MODELING

According to Gilbert (2008, p. 2): "agent-based modeling is a computational method that enables a researcher to create, analyze, and experiment with models composed of agents that interact within an environment." When talking about ABM, the concept of agents needs addressing. However, the definition of an agent is a contended one in the simulation community (Tolk \& Uhrmacher, 2009).

According to Gilbert and Troitzsch (2005, p. 172) "although there is no generally agreed definition of what an 'agent' is, the term is usually used to describe selfcontained programs that can control their own actions based on their perceptions of their operating environment." Rusell and Norvig, (2003, p. 32) define an agent as "anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators." Rusell and Norvig present the term precept to "refer to the agent's perceptual inputs in a given instant" and the term percept sequence as "the complete history of everything the agent has perceived." Figure 16 reflects the agent concept as presented by Rusell and Norvig.

Figure 16. A Basic Agent Structure (Adapted from Russel \& Norvig, 2003, p. 33)

Tolk and Uhrmacher (2009) propose that an agent should perceive its environment, and act in its environment. Further, an agent should communicate with other agents to establish a social ability. Moreover, an agent should be autonomous, outside of central control, and flexible, being able to react to, pursue goals, or adapt to changes in its environment.

Moya and Tolk, in Tolk and Uhrmacher (2009), state that there are three external and four internal architectural domains. External domains "comprise those functions needed within an agent to interact with his environment" (p.97). These external domains are: perception domain, which observes the environment through sensors and sends information to internal sense making domain; action domain, which comprises effectors to act on its environment; communication domain, which exchanges information with other agents or humans. Internal domains "categorize the functions needed for the agent to act and adapt as an autonomous object" (p.98). These internal domains are: sense making domains, which receive input and map this information to the internal representation. The decision making domain supports methods that are reactive and deliberative. These methods lead to action. Adaptation domain updates current goals, tasks, and desires. Finally, the memory domain stores all information needed for an agent to perform its tasks. Figure 17 presents this architectural frame.

Figure 17. Agent Architectural Frame (Adapted from Tolk \& Uhrmacher, 2009)

As a modeling paradigm, agent-based modeling has become very popular recently in the social sciences for its appeal for building models where individual entities and their interactions are directly represented (Gilbert 2008). Axelrod (1997, p. 3-4) calls agent-based modeling the third way of doing science:

> Like deduction, it starts with a set of explicit assumptions. But unlike deduction, it does not prove theorems. Instead, an agent based model generates simulated data that can be analyzed inductively. Unlike typical induction, however, the simulated data come from a rigorously specified set of rules rather than direct measurement of the real world.

Abrahamson and Wilensky (2005) present three main contributions of ABM to the advancement of theory:

- Explicitizing: The ABM environment demands an exacting level of clarity and specificity.
- Emergence: $A B M$ enables the researcher to mobilize an otherwise static list of conjectured behaviors and witness any group-level patterns.
- Intra/interdisciplinary collaboration: ABM serves as lingua franca enabling researchers who otherwise use different framework terminology and methodology to understand and critique each others work.

Explicitizing is crucial in any research in a manner that demands to declare assumptions and presuppositions about the model and especially about the system or theory being modeled. In addition, it provides a high level of formalization and precision that would not be achieved if the theory is expressed in natural language (Gilbert, 2008). Emergence occurs when interaction among objects at one level gives rise to different types of objects at another level. Emergence is one of the most important ideas from complexity theory (Gilbert \& Troitzsch, 2005). This interaction among objects is
translated to interaction among agents making emergence a characteristic widely associated with this modeling paradigm. Finally, intra/interdisciplinary collaboration allows for researchers across disciplines, political science, biology, and engineering, to collaborate by constructing models together that can use each one of their theoretical strengths from their own fields.

Jennings (1999) suggests two drawbacks of ABM:

- The patterns and the outcomes of the interaction are inherently unpredictable.
- Predicting the behavior of the overall system based on its constituent components is extremely difficult (sometimes impossible) because of the strong possibility of emergent behavior.

Referring to bullet one, Axtell (2000) remarks that robustness of results can be assessed with a sufficient number of runs and systematically varying initial conditions. Referring to bullet two, emergence is also advantageous. This is because we can see the overall behavior of the system as it is more than the sum of its parts.

4.4.3 MODEL ANALYSIS

Simulation is used in this work because it is suited for developing theories. Davis et al., 2007 remark that simulation enhances theoretical precision and enables theory elaboration and exploration. Ören (2009, p. 15) takes this idea further and states that "simulation can be perceived as a computational activity, systemic activity, model-based activity, knowledge generation activity, and knowledge processing activity."

As a computational activity, Ören remarks that "the role of the computer in simulation spans from generation of model behavior to simulation-based problem solving environments." (p. 15) He suggests that this perspective is likely to hinder highlevel possibilities of simulation-based computer-aided problem solving environments such as experimental frame specification. As a systemic activity, Ören presents M\&S as a
way of representing a system in terms of inputs, states, and outputs. He remarks that this perspective presents the difficulty of "finding the state variables which may satisfy the input-output pairs." (p. 15) As a model-based activity, Ören presents M\&S as a form to study different activities such as model composability, model-based management, parameter-based management, and symbolic modeling. As a knowledge generation activity, Ören states that "from an epistemological point of view, simulation is a knowledge generation activity." (p. 15) He remarks that the generated knowledge is model-based experiential knowledge. Finally, in seeing M\&S as a knowledge processing activity, Ören remarks that it allows for integrating simulation with other knowledge processing techniques. The perspective of $M \& S$ as a knowledge generation activity is the one used in this work.

Given that all the elements of a conceptual model are in place (components of understanding, process that relates components, and conditions of understanding) a simulation seems to be the next logical step. In order to do so, the understanding construct is converted into a computable model representation. This model is implemented using agents and simulated in order to collect data. Data provide insight into the process of understanding through generalizations.

The Systems Engineering Process (SEP) is used to analyze, design, and implement the model. Figure 18 shows the SEP and all its steps. (DAU, 2001, p. 31-33) presents this process starting with the process input which reflects objectives, requirements and major constraints. Requirement Analysis is used to develop functional and performance requirements: what the system must do and how well. Using Functional Analysis is the decomposition of requirements into lower level functions resulting in a functional description of the product. Synthesis builds up on the analysis in terms of the implementation. These three stages are assisted by the requirement loop allowing for the traceability of the function to the initial requirement, the design loop allowing for the traceability of the elements to be implemented to the function, and the verification loop allowing for the traceability of the implementation to the original requirement.

Systems Analysis and Control is an overseeing activity of all the steps of the process. The process output reflects any data or processes needed to develop the product.

Figure 18. The Systems Engineering Process (Adapted from DAU, 2001)

The reporting of the SEP traditionally is a collection of documents that contain a list of requirements or measures of performance, for instance. However, modeling alternatives such as block diagrams or UML (Unified Modeling Language) are widely used in systems engineering (Ogren, 1999). UML, for instance, provides the advantage of covering all modeling phases while being reusable and graphical in nature (Bahill \& Daniels, 2002). The International Council on Systems Engineering (INCOSE) highlights the use of Systems Modeling Language (SySML) to model complex systems to provide "standards representations with well defined semantics that can support model and data interchange." (INCOSE, 2007, p. 7.7)

UML is used in this dissertation to guide the modeling effort. UML highlights what needs to be done and how it needs to be done. Some of the most used diagrams are use case, class, state machine, activity, and sequence. Use case diagrams in UML
capture elements and main processes in a model while defining requirements. Class diagrams capture the static structure of a system by showing how different elements relate to one another. State machine diagrams capture the overall behavior of a system at any point in time and activity diagrams capture activities within states. Finally, sequence diagrams show interaction in elements in a sequence. These diagrams are presented in two batches: one batch presents a paradigm-independent analysis and design of the problem; the other presents an implementation-oriented design of the solution of the problem. The diagrams presented are simple diagrams, given that this is a simple model. However, the model is complete enough to convey a system that reflects the process of understanding.

What

The high level requirement of this model is to help address the research goal: to provide an experimental setting that not only reflects the process of understanding, but allows for analysis of results to gain insight into what was understood. In order to do so, constructs and relations among those constructs need to be formulated. From the discussion from the previous section, three constructs need to be considered: knowledge, worldview, and problem. Figure 19 shows these constructs in a use case diagram. At the heart of this model lie the rules that allow for these constructs to relate to one another which are the matching of knowledge (K), worldview (W), and problem (P) and the fulfillment of the condition of appropriateness. These rules are based on definition 6 and propositions 1 and 2 that when put together form a system of premises.

Figure 19. Constructs of the Model of Understanding

In order to further discuss these constructs and the relations in which they are involved, characterizations of those constructs are needed. Figure 20 provides a class diagram with the characterization of K, W and P derived from definitions 4 and 5 .

Figure 20. Class Diagram of the Model of Understanding

Figure 20 shows the breakdown of an individual in constructs needed for understanding. The individual has a knowledge base, with a collection of $K \alpha$ and $K \beta$; worldview, with a collection of $\mathbf{W} \alpha$ and $\mathbf{W} \beta$, and what it considers its problem, with a collection of $\mathrm{P} \alpha$ and $\mathrm{P} \beta$.

How

Behavioral diagrams show how the system works. Figure 21 shows the state machine diagram for an individual. This diagram shows the states an individual goes through when understanding a problem, namely, selection of K, W, and P; matching of K, W, and P; and assessment of effort. Given that the model focuses on establishing a baseline, there is no suggestion regarding the selection process in order to avoid introducing a particular strategy. Instead, that selection is to be implemented as random. The matching occurs under the three schools of thoughts, KW- P, KP- W, and WP- K. Finally, the assessment of effort is reflected with the update to a counter every time the individual says it does not understand.

Figure 21. State Diagram for the Model of Understanding

A more elaborate form of adding more information is an activity diagram. Figure 22 is an activity diagram that represents how an individual selects from the knowledge base, from its worldviews and from the already identified problem. To make the assessment of effort, a counter is set up to account for mismatching of K, W, and P counting until the last P is understood. When understanding occurs the problem
statement that was understood is no longer considered. Just as the state diagram, one activity diagram is considered for the three schools of thought of understanding given that it presents the same process of selection, matching, and assessment what differs is the way the matching is done.

Figure 22. Activity Diagram for the Model of Understanding

Implementing UML with NetLogo

Figure 23 shows an agent-based class diagram. The class diagram is the only of the previous diagrams that convey more information under this implementation. Use case, for instance, under an agent notation remains the same.

NetLogo is a multi-agent modeling language developed by Uri Wilensky at the Center for Connected Learning and Computer-Based Modeling of the Northwestern University of Evanston (US). It is conceived with the purpose of implementing simple rules into to agents and observe emergent phenomena. According to Albiero, Fitzek, and Katz (2007, p. 579)

NetLogo is particularly convenient for the analysis of any complex system developing over time, as the programmer can give instructions to thousands of independent agents all operating concurrently.

For this research, agents can be either turtles (name of moving agents within the NetLogo environment) or patches (not moving agents). Patches are the minimal unit of the grid division over which turtles can move.

Figure 23. Agent-based Class Diagram for the Model of Understanding

Figure 23 shows the agent entity and some of its attributes and methods. These attributes and methods are passed onto turtles representing knowledge, worldview, and problem. In the implementation, a patch is also an agent that shares some of the attributes and method with turtles. To avoid giving turtles strategies, main processes, such as counting and matching of turtles are given to patches. When turtles arrive to a patch some of these processes are triggered. In the case where the three types arrive to a patch the matching of K, W and \mathbf{P} takes place. In other words, the rules of interaction among agents were given to the patch where they stand. This is an implementation
decision. The agents are reactive agents whose action is totally random. The matching, which is at the heart of the rules of interaction depends on the school of thought under consideration. Those rules of interaction are shown in Figure 24 with a sequence diagram.

Figure 24. Sequence Diagram for the Model of Understanding

A sequence diagram has shortcomings when used to show interaction among agents given that agents run in parallel instead of a sequence. Additionally, there is no difference in which agent arrives to the patch first. For instance, during KP-W a knowledge agent can arrive first and worldview agent second or vice versa to a patch. However, this diagram reflects the three schools of thought or types of understanding established by the theory as it shows their implemented sequence.

For instance, the KP-W matching is implemented through the simultaneous overlapping of K, W, and P agents. The match, however, starts with the first two agents
to arrive. In KP-W, if K and P arrive first, then they are locked waiting for a W turtle to arrive. For WP-K, if W and P turtles arrive first then they are locked waiting for a K turtle to arrive. Finally in KW- P, if K and W turtles arrive first at a patch then they are locked waiting for a \mathbf{P} turtle to arrive. The locking time is the window of opportunity (WO) mentioned in section 5 . WO affects only KP-W and WP-K which are the ones where the initial match, KP and WP respectively, contains a problem. If within this window of opportunity for KP and WP, W and K turtles, respectively, do not arrive then the agents separate. For the KW match, the wait is for a P turtle so the match is not affected by the window of opportunity. They do separate however, when a P turtle arrives and the matching occurs. This is to avoid the effect of memory in the matching and allowing K and W agents to move freely.

It is important to mention that this is an implementation and may not be the implementation. What this implementation provides, however, is the advantage that it is looking for a baseline, meaning looking for what understanding is, and not to reflect strategies on how understanding can be performed better. For that purpose, strategies such as memory, or preconceived strategies by the researcher are left out.

Finally, as the loops in Figure 24 suggest, the SEP is not linear. Iterative steps take place in between the SEP. In addition, the first step in the verification of the model has taken place by tracing the constructs and rules to be implemented in the model back to the theory from where they were generated via intermediate definitions and propositions. Finally, this computer model allows for the experimental setting presented by the high level requirements. The results are obtained after the simulation is executed.

4.4.4 MODEL IMPLEMENTATION

Up to this point, the overall modeling process has progressed from what the system needs to do and how to what and how it needs to be formulated using an UML agentoriented notation. From this point on, these subsections are more focused on the
computer simulation of the model. This is still considered part of the design process, but it was separated for presentation purposes.

Throughout the modeling process, what it has been shown are turtles with attributes and methods, interacting in a matching process under three scenarios.

The interaction within the simulation, is derived from definitions 4 and 5 and propositions 1 and 2. In other words, when corresponding types of statements, alpha or beta, match understanding occurs. When mismatch between types occur then counter adds 1 towards effort to understand.

Propositional Logic of the Agent Simulation

- Let's define:
- $\mathrm{A}_{1}=K_{\alpha}$ in patch
- $A_{2}=K_{8}$ in patch
- $B_{1}=W_{\alpha}$ in patch
- $B_{2}=W_{B}$ in patch
- $C_{1}=P_{\alpha}$ in patch
- $C_{2}=P_{8}$ in patch
- In order to have a match, K, W and P agents must be on the same patch. Only three agents are accepted per patch at the time.
- Understanding occurs and P_{i} is eliminated when:
- $A i \wedge B i \wedge C i$
- For $i=1$ or 2
- Not-Understanding occurs when:
- $\quad A i \wedge B i \wedge C i$
- For $i=1$ and 2
- Unable to Understand or not-Understand when:
- $\neg\left(A_{i} \wedge B_{i} \wedge C_{i}\right) \vee\left(A_{i} \wedge \neg\left(B_{i} \wedge C_{i}\right)\right) \vee\left(B_{i} \wedge \neg\left(A_{i} \wedge C_{i}\right) \vee\left(C_{i} \wedge \neg\left(A_{i} \wedge B_{i}\right)\right.\right.$

$$
) \vee\left(\neg A _ { i } \wedge (B _ { i } \wedge C _ { i }) \vee \left(\neg B_{i} \wedge\left(A_{i} \wedge C_{i}\right) \vee\left(-C_{i} \wedge\left(A_{i} \wedge B_{i}\right)\right)\right.\right.
$$

- For $i=1$ and 2

Understanding and not-understanding are both considered within the simulation. The former allows P turtles to be eliminated while the latter allows accounting for effort to understand.

Structure and Behavior of Agents

The agents modeled in this work are simple agents with no additional learning or decision making capability. This is because the objective is to establish a baseline with no strategy or the possibility of creating a pattern of behavior. Rusell and Norvig (2003, p. 46) defined these agents as simple reflex agents. These are agents that "select actions on the basis of the current precept, ignoring the rest of the precept history." They also state that "simple reflex agents have the admirable property of being simple, but they turn out to be of very limited intelligence" (p. 47). The structure of this type of agent is presented in Figure 25.

Figure 25. Diagram of a simple agent (Adapted from Russel \& Norvig, 2003, p. 47)

In other words, the agent bases any decision taken on its actual state without considering any past state. Russel and Norvig (2003) state that these agents only work if
the environment is fully observable ${ }^{2}$. However, this is not the case here given that the environment is not fully observable by an agent. To overcome this hurdle, According to Russel and Norvig, the next action can be determined by randomizing the actions an agent can take. This random behavior, they posit, can be rational in some multiagent environments whereas for single-agent environments, a more sophisticated agent is better.

Given that the model is conceived to be run as a multi-agent simulation looking for a baseline, a simple reflex agent with fully random actions is considered the most appropriate. In the case that a rule set of behavior describing understanding existed already or that one wants to evaluate how to better understand (having already defined what understanding is) the use of a goal-based or utility-based agent need to be considered. This, however, is outside of the scope of this research.

Rusell and Norvig (2003, p. 43) state that the hardest case of the environment and agent can be placed in is where it is partially observable, stochastic, sequential, dynamic, continuous and multi-agent ${ }^{3}$. This agent-based model has been conceived is partially observable, stochastic (next step of the environment is not completely determined by the current state), episodic (next episode does not depend on previous actions), dynamic (environment changes while agent is deliberating), discrete (finite number of distinct states and discrete set of percepts and actions), and multi-agent (considering K, W, and P as distinct types of agents).

In summary, to establish a baseline for understanding:

- No predisposed idea is built in the model. Everything is based on premises derived from existing theory.
- All forms of movement and interactions are random.
- In addition:

[^1]o No memory

- No sequencing
- No mathematical function that relates constructs.
- The output is truly emergent based on simple rules of interaction among simple agents.

A Computer Implementation

The interface presented in Figure 26 was created in Netlogo 4.1 containing a way of establishing initial conditions for the simulation, in terms of knowledge, worldviews, problem, window of opportunity, and school of thought. In terms of output and for verification purposes, what was understood, what was not understood and problems remaining are presented. Window of opportunity (WO), as it was initially highlighted, was created to consider the effect of time within the construct of understanding. AgentType is a switch used for verification purposes. It shows the type of agent on the screen.

Figure 26. Interface of the ABM for the Model of Understanding

Different initial conditions translate into the different ways a problem can be understood depending on the knowledge base, worldviews of an individual, the way the problem was perceived, and the time constraints the problem has in order to be understood. Given that there are many possible initial conditions, depending on the different combinations of K, W, P and WO, a design of experiments (DOE) is needed to narrow these possible combinations to a manageable number where results can be analyzed and conclusions can be drawn.

4.4.5 MODEL SIMULATION

According to Kuhn and Reilly (2002), "DOE seeks to maximize the amount of information gained in an experiment by optimizing the combinations of independent variables." This is achieved by "manipulating levels or amounts of selected independent variables (causes) to examine their influence on dependent variables (effects)" (Fisher, 1960).

The independent variables, or factors, considered in the model are:

- Knowledge
- K_{α}
- K_{β}
- Worldview
- W_{α}
- W_{β}
- Problem
- P_{α}
- P_{β}
- Window of Opportunity ($W O$) $=$ time where the problem is amenable to be understood.

The dependent variables considered in the model are:

- Time: how long it took for the whole problem to be understood.
- Effort to Understand: how many mismatches it took for the problem to be understood.

Table 1 shows the factors and levels under which the factors are going to be studied. The DOE presents each variable to be experimented at two levels. Given that there are seven variables at two levels, 128 experiments are needed $\left(2^{7}\right)$. Numbers 5 and 95 reflect the number of agents for each type of K, W, and P . In this case, the numbers reflect a low or high number of statements.

	LOW	HIGH
$\mathrm{K} \alpha$	5	95
$\mathrm{~K} \beta$	5	95
Wa	5	95
$\mathbf{W \beta}$	5	95
$\mathbf{P \alpha}$	5	95
$\mathbf{P \beta}$	5	95
WO	5	95

Table 1. Factors and Levels of DOE

The Behavior Space feature of NetLogo was used to conduct the experiments set up by the DOE. Initial conditions for the DOE are shown in Appendix A.

To obtain the data corresponding to dependent variables considered in the model, the following setup was followed:

- Ten (10) experiments per 128 initial conditions per 3 scenarios (3840 experiments) were conducted with the purpose of identifying the number of runs needed to establish a statistical significance within a 95% confidence interval and within a margin of error of 10%, which means that 95% of the time, the results will be within 10% of the mean. 95% confidence interval is the one adopted traditionally with a 5% margin of error. However, 10% margin of error was selected to provide a basis for testing the boundary limits of the theory without running an extensive number of experiments. The sample number, that gives confidence interval and margin of error, can be found in most statistics books. For the specific case as it applies to M\&S see Kelton, Sadowski, and Sturrock (2004).
- For a 95% confidence interval and within a margin of error of 10% it was determined that 250 runs were needed.
- 128 initial conditions $\times 250$ runs $\times 3$ scenarios $=96000$ experiments.

4.4.6 MODELING ASSUMPTIONS

As previously mentioned, one of the main advantages of using M\&S is that assumptions can be made explicit. Even if they are implicit, third parties can question assumptions obviated or neglected by the researcher. Assumptions are needed for many reasons, among them the necessity to simplify reality and facilitate the modeling process making them crucial in the abstraction process. As with any other model, this model has its assumptions. Assumptions are driven by the main premise of the modeling effort which is to establish a baseline for understanding with the proposed model. This means that strategies on how to achieve better understanding, process of learning, and processes of problem solving and decision making are purposefully left out and anything that conveys what understanding is needs to be considered.

Modeling Assumption 1. Closed System

A closed system seeks to establish the boundaries of the model and assure what is being simulated is in fact understanding. The closed system assumption covers three assumptions: first, the problem is in a person's head and is not being affected by the evolution of the problem in reality. This also assumes that the way the problem arrives in a person's head is inconsequential as long as it is there. Having an open system eliminates traceability, but more importantly it may be prone to feedback that reflects the process of learning. In addition, new problems in the system are a function of perception and not of understanding which confounds perception with understanding. This would require a learning model that allows for adjustment to the new situation as it evolves in reality, which then is no longer an understanding model. In addition, the model would require action to affect that reality which then becomes part of a problem solving or decision making process. Further, one would need to consider the feedback of action which then becomes a learning process. Finally, if how the problem was perceived as a problem was to be considered, a formulation of the process of perception, or a perception model, would be required which is in itself a separate process. Second, the person is limited to the knowledge s/he has. This implies that no learning takes place to enhance understanding. Third, worldview and knowledge do not mutate. According to the literature, worldview and knowledge are subject to change or convert to the opposite kind. Worldview change after action has been taken and feedback of a negative outcome prompts the change. Given that no action is considered, worldview remains the same. Knowledge converts from one kind to the other. However, given that the conditions under which the change happens are not specified as part of understanding within the literature, this conversion is not considered.

Modeling Assumption 2. Convergence of Simulation

On the DOE presented, low level of the factors is not zero. When one of the factors is zero, the individual is not able to understand. This assures understanding given
unlimited time to run. This also considers not understanding as a form of understanding, but it takes it as the effort the individual makes to understand the problem while allowing for the consideration of time. In other words, the model considers how much effort and how much time it took to understand the problem.

Modeling Assumption 3. Independence of Problems

One argument that could be made is that problem agents are related to one another. However, this argument brings another assumption: one that requires a unique formulation of that structure making it an instantiation of a problem and a limitation to establishing the general case. Moreover, a unique formulation denies the possibility of alternate formulations which is at the heart of problem situations. Further, the existence of many structures is as good as no structure. Finally, the assumption of a structure implies that there is some understanding of the problem which says that the problem has a structure. All these reasons justify the consideration of a problem to be independent of one another; to allow for the establishment of a baseline for understanding without introducing any bias.

Modeling Assumption 4. Independence of Knowledge

Knowledge may also be considered as the connection of statements we know. However, it is not knowable what structure these statements have unless one refers to a specific formulation of a specific knowledge base which then becomes an instantiation of a knowledge system. Further, knowledge dependence assumes that understanding has already occurred and that allows an individual to relate one statement to another. This is valid when formulating knowledge based on a machine, but it most definitely does not reflect how knowledge is structured in a person's head. In other words, no knowledge structure should be assumed.

Modeling Assumption 5. Independence of Worldview

As with problems and knowledge, worldview could also be related. However, for the same reason provided above, they should not. One characteristic that is unique of worldviews when it comes to independence is that if this is not enforced, one could quickly fall into strategies that efficiently and effectively seek structure of behavior distancing the effort of establishing a baseline.

Modeling Assumption 6. Homogeneity of Knowledge, Worldview, and Problem

This assumption establishes that one statement (K, W, or P) is no more important than another. In reality, this is not necessarily true given that some elements of the problem, for instance, are likely to be more important than others. The same applies to knowledge and worldview. However, if this assumption is not made, just as assumptions 3,4 , and 5 , it is said that something is understood of K, W, and P. The main premise of the model is that no previous understanding of anything exists in order to establish a baseline with no bias.

Modeling Assumption 7. Matching of Types and Reusability of K and W

One of the prevalent premises from the Al account is that of mapping between knowledge and problem. This idea of mapping, although, correct is applicable only on specific cases where it is known that some elements can in fact be mapped. This is not the case in problem situations. One statement can be appropriate to many statements (reuse) which truth value is unknown given that the question of appropriateness cannot be answered. This would imply knowing in advance the unique solution to that problem reflecting previous understanding. Therefore, appropriateness can only be established by matching corresponding types of knowledge, worldview, and problem (matching of types) and abiding by the propose conditions of understanding. For instance, if a true statement is matched with a problem and the statement is not relevant to the problem, then even if the types match, the individual is not able to understand.

4.5 DATA ANALYSIS

The purpose of the M\&S approach was to facilitate structure and generate data from which generalizations can be made. These characteristics are under the establishment of a baseline for understanding. A baseline is equivalent to a control condition for experimentation. In this particular case, the baseline reflects what was understood as independent from possible concurrent processes such as learning or from particular techniques such as those used to better understand.

As a way to guide the analysis, emergence of patterns is sought through results, then a qualitative assessment is conducted to establish expectations, and finally a quantitative analysis is performed on observations from the qualitative assessment.

Observations of patterns are based on the graphs generated by the calculations of means for 250 experiments for the 128 initial conditions. Figure 27 shows the overlapping of effort of the three types of understanding. It is known that the matching of K, W and P is what generates understanding or not-understanding and that appropriateness is what differentiates one from the other. As presented by Nickerson (1988), the best way to study understanding is through not-understanding, which is seen as the effort it takes for an individual to understand. Figure 28 shows the overlapping of time (an individual takes to understand) of the three types of understanding per initial condition. Window of Opportunity is introduced to compare what was understood given a time constraint.

Figure 27. Means Comparison for WP-K, KW-P and KP-W (Effort)

Figure 28. Means Comparison for WP-K, KW-P and KP-W (Time)

Time here can be seconds, and it can be weeks. In other words, time does not have a unit of measurement, so a person can take on average less time than another, yet not know how little. Effort, on the other hand, is measured in the number of mismatches among K, W, and P. However, it still serves a categorization purpose. Lastly, effort and time can be seen as measures of effectiveness and efficiency of the process of understanding: the less effort the more effective our understanding is, the less time the more efficient our understanding is.

As a final note, what the data provides are the observations of what was understood given an effort and time. Therefore, the baseline provided by the data, assuming that a person understands, is the difference between what was understood from different people depending on initial conditions.

4.5.1 QUALITATIVE ASSESSMENT

Figure 27 (see Appendix B for the corresponding data) shows that indeed there is an apparent common behavior for the three types of understanding in terms of effort. Two observations are made:

- The three types of understanding have a similar pattern when it comes to effort.
- In addition, four distinct levels are observed. Levels 1 to 3 are in the few thousands whereas level 4 is in the ten thousands. These levels need to be further explored.

Figure 28 (see Appendix C for the corresponding data) shows that the three types of understanding do not present a discernable pattern in terms of time as it is in terms of effort. However, observations can be made: in most cases KW-P takes less time than WP-K and KP-W. This needs to be explored.

Although there are three types of understanding that need analysis, it is noted that:

- One of the three types of understanding is going to be used for analysis in terms of effort. Although they may prove to be statistically different, for simplification purposes, they are considered the same. The analysis of the other two is conducted on the need to basis.
- KP-W is selected for the analysis of the data. This is because it is the one with the most normally distributed initial conditions or approximately normally distributed out of the three (see Table 2). P-values need to be > $=0.05$ to not reject the normality assumption. This assumption must be assessed to perform parametric analysis.
- Analysis of time is to be conducted on the need to basis as a complement of to the analysis of effort because, unlike effort, time does not present an apparent overall pattern that can guide the analysis.

Condition	WP-K	N-P	KP-W	ondition	WP-K	KW-P	P-	Condition	WP-K	KW-P	KP-W	Condition	WP-K	W-P	KP-W
1	0.44	0.15	0.13	33	0.04	0.14	0.06	65	0.34	0.09	0.44	97	0.29	0.06	0.01
2	0.02	0.66	0.62	34	0.13	0.86	0.45	66	0.22	0.09	0.04	98	0.11	0.07	0.22
3	0.73	0.11	0.08	35	0.11	0.03	0.03	67	0.03	0.36	0.12	99	0.07	0.32	0.08
4	0.01	0.78	0.97	36	0.96	0.95	0.97	68	0.79	0.92	0.12	100	0.64	0.63	0.18
5	0.8	0.06	0.06	37	0.16	0.23	0.16	69	0.42	0.35	1	101	0.53	0.03	0.3
6	0.01	0.85	0.97	38	0.8	0.92	0.95	70	0.32	0.72	0.97	102	0.56	0.54	0.84
7	1	0.01	0.01	39	0.02	0.21	0.25	71	0.06	0.06	0.05	103	0.13	0.03	0.09
8	0.47	0.65	0.99	40	0.91	0.66	0.61	72	0.92	0.83	0.34	104	0.92	0.29	0.45
9	0.03	0.16	0.47	41	0.01	0.12	0.16	73	0.05	0.14	0.45	105	0.01	0.1	0.04
10	0	0.06	0.13	42	0.38	0.15	0.1	74	0.1	0.03	0.35	105	0.05	0.21	0.05
11	0.65	0.12	0.24	43	0.15	0.81	0.39	75	0.26	0.01	0.23	107	0.11	0.1	0.05
12	0.43	0.97	0.35	44	0.56	0.91	0.47	75	0.16	0.08	0.03	108	0.29	0.1	0.1
13	0.09	0.15	0.05	45	0.03	0.02	0.23	77	0.04	0.03	0.12	109	0.77	0.25	0.08
14	0.99	0.57	0.35	46	0.77	0.45	0.49	78	0.04	0.09	0.09	110	0.08	0.2	0.05
15	0.03	0.06	0	47	0.08	0.01	0.27	79	0.02	0.12	0.19	111	0.21	0.03	0.04
16	0.97	0.81	1	48	0.93	0.91	0.74	80	0.97	0.96	0.92	112	0.55	0.77	0.61
17	1	0.95	0.34	49	0.97	0.73	0.98	81	0.16	0.88	1	113	0.33	0.98	0.57
18	0.4	0.76	0.59	50	0.81	0.78	0.5	82	0.52	0.82	1	114	0.92	0.82	0.96
19	0.16	0.01	0.12	51	0.31	0.05	0.02	83	0.82	0.59	0.26	115	0.69	0.49	0.91
20	0.76	0.95	0.98	52	0.98	0.99	0.32	34	0.82	0.63	0.7	115	0.9	0.93	0.56
21	0.02	0.19	0.25	53	0.03	0	0.06	85	0.78	0.85	0.97	117	0.8	0.54	0.68
22	0.98	0.99	0.49	54	0.92	0.48	0.96	86	0.89	0.73	0.88	118	0.92	0.92	0.96
23	0.05	0.08	0.11	55	0.07	0.04	0.05	87	0.05	0.45	0.23	119	0.31	0.28	0.02
24	0.97	0.92	0.8	56	0.53	0.97	0.98	88	0.95	0.89	0.83	120	0.99	0.69	0.96
25	0.44	0.96	0.93	57	0.37	0.53	0.97	89	0.94	0.94	0.9	121	0.98	0.82	0.36
26	0.45	0.85	0.7	58	0.42	0.67	0.97	90	0.52	0.84	0.85	122	0.66	0.93	0.11
27	0.33	0.92	0.1	59	0.94	0.52	0.89	91	0.96	0.52	0.85	123	0.08	0.29	0.69
28	0.97	0.56	0.87	60	0.75	0.95	0.49	92	1	0.67	0.49	124	0.92	0.23	0.48
29	0.98	0.89	0.83	61	0.69	0.36	0.18	93	0.68	0.97	0.77	125	0.9	0.88	0.75
30	0.44	0.95	0.89	62	0.95	0.74	0.77	94	0.71	0.85	0.75	126	0.78	0.83	0.54
31	0.26	0.04	0.1	63	0.8	0.67	0.06	95	0.88	0.81	0.82	127	0.95	0.28	0.42
32	0.33	0.37	0.57	64	0.84	0.89	0.48	96	0.73	0.91	0.99	128	0.81	0.68	0.33

Table 2. Kolmogorov-Smirnov Normality Test for WP-K, KW-P, and KP-W (p-values)

4.5.2 QUANTITATIVE ANALYSIS

In the qualitative assessment it is found that, when referring to effort, there seems to be levels as observed in Figure 29. It was found that what apparently looked like four levels are instead seven. Levels 1 to 4 are shown in Figure 29. Level 1 is located between values 0 and 50, level 2 between values 150 and 250, level 3 between values 250 and 350 , and level 4 between values 500 and 600 for all three types of understanding.

Figure 29. Levels 1, 2, 3, and 4 (Effort)

Figure 30 shows levels 5 and 6 . Level 5 is located between values 1500 and a little over 2000 and level 6 with values between 3000 and 4000 for all three types of understanding. It is noted that while variation in levels 1 to 4 is in the few tenths, variation in levels 5 and 6 are in the hundreds. Figure 31 shows level 7 which for all three levels varies in the tens of thousands.

Figure 30. Levels 5 and 6 (Effort)

Figure 31. Level 7 (Effort)

To study these levels, comparison of means was conducted using one-way ANOVA. ANOVA or analysis of variance uses the F-test to test the hypothesis concerning the means of three or more populations. Here, ANOVA is used to compare the means of three or more samples.

Level 1

Table 3 shows the initial conditions for level 1.

Condition\Factor	K_{α}	K_{β}	W_{α}	W_{B}	P_{a}	P_{β}	WO
1	L	L	L	L	L	L	L
13	L	L	H	H	L	L	L
33	L	L	L	L	L	L	H
45	L	L	H	H	L	L	H
67	H	H	L	L	L	L	L
79	H	H	H	H	L	L	L
99	H	H	L	L	L	L	H
111	H	H	H	H	L	L	H

Table 3. Level 1 Initial Conditions

A Levene test for homogeneity of variances was conducted (Table 4) for level 1. This test says that variances are not homogeneous. No homogeneity can be due to condition 111 because its data are not distributed normally ($p=0.04$). Moreover, the significance value of 0.01 of the F test suggests that means of the eight conditions are not comparable (Table 5).

Test of Homogene ity of Variances
Effort
$\left.\begin{array}{\|c\|c\|c\|c\|}\hline \text { Levene } & & & \\ \text { Statistic } & \text { df1 } & \text { df2 } & \text { Sig. } \\ \hline 2.489 & & 7 & 1992\end{array}\right] .015$

Table 4. Levene Test for Level 1

ANOVA
Effort

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2731.580	7	390.226	3.587	.001
Within Groups	216680.1	1992	108.775		
Total	219411.7	1999			

Table 5. F Test for Level 1

Figure 32 shows the plot of the means for level 1.

Figure 32. Plot of Means for Level 1 (Effort)

It can be observed that condition 111 is the one that presents a mean that seems extreme compared to the rest. It is noted that data transformation was not conducted in condition 111 because it would still not be able to compare it to the other conditions given that the mean will be dramatically different. Table 6 shows the Levene test for
conditions $1,13,33,45,67,79$, and 99 . Now that their variances are homogeneous, ANOVA can be used. The F test for these conditions gives a $p=0.158$ which suggests that conditions at level 1, excluding condition 111, are not statistically different (Table 7).

Test of Homogeneity of Variances
Effort

Levene Statistic	df1	df2	Sig.
1.805	6		1743

Table 6. Levene Test for Level 1 (Excluding Condition 111)
ANOVA
Effort

	Sum of				
Squares	df	Mean Square	F	Sig.	
Between Groups	1040.992	6	173.499	1.551	.158
Within Groups	195003.7	1743	111.878		
Total	196044.7	1749			

Table 7. F Test for Level 1 (Excluding Condition 111)

According to the data, condition 111 should not be considered within level 1. However, given that there is no other sublevel, it is considered within level 1 for assessment.

Level 1 low effort is due to the low level of problem (both P_{α} and P_{β}) combined with either high or low level of both knowledge (both K_{α} and K_{β}) and worldview (both W_{α} and W_{β}). It is noted the uniformity of knowledge and worldview on either high or low levels. This means that no combination of high and low knowledge or high and low worldview is present.

The fact that the means at this level are not statistically different provides insight into a common preconception: more knowledge implies better understanding. Based on the data:

- Looking at conditions 1 and 67, they are statistically equivalent; they have low and high knowledge levels respectively keeping worldview, problem, and WO at same levels. In other words, more knowledge does not imply less effort (better understanding). It is noted that "better understanding" is seen here in terms of effort.
- More worldview does not imply better understanding, in terms of effort (see conditions 1 and 13).
- Finally, a high setting on WO does not imply better understanding, in terms of effort. When comparing conditions 67 and 99 and conditions 13 and 45 it can be seen that they are statistically equivalent. It is noted that all these assessments are made at level 1.

The previous bullets give us insight into one important aspect: better understanding. Better understanding, in this case, is inferred from all different conditions. In other words, given a problem perception and WO of the problem, the best setting combination of knowledge and worldview to achieve understanding with less effort can be found when looking at the tables of the different levels and the corresponding output.

Although conditions in level 1 have comparable means in terms of effort, in terms of time they do not. In order to compare means in terms of time, normality tests for all conditions are needed (see Appendix E). It can be observed from the normality test for time that most conditions are not normally distributed, so ANOVA cannot be used. Instead, the Kruskal-Wallis non-parametric test is used. The Kruskal-Wallis test is used when the assumption of normality does not hold. Table 8 shows the Kruskal-Wallis test when comparing conditions for level 1.

Test Statistics ${ }^{\text {a,b }}$

	Time
Chi-Square	1369.854
df	6
Asymp. Sig.	.000

a. Kruskal Wallis Test
b. Grouping Variable: Condition

Table 8. Kruskal-Wallis Test for Level 1 (Time)

The test shows the asymptotic significance that estimates that the probability of obtaining a chi-square statistic greater than or equal to the one displayed if there truly is no difference between the group ranks. In this case, a chi-square of 1369.854 with 6 degrees of freedom should occur about 0 times per 1000. In other words, conditions within level one are statistically different. It is noted that the test was run without condition 1 given that it was a value that could skew the analysis (see Figure 33).

Figure 33. Plot of Means for Level 1 (Time)

Figure 33 provides three important insights:

- The positive impact of worldview is evident when comparing conditions 1 and 13 showing that it reduces the time needed to understand. The same can be said about the effect of knowledge when comparing conditions 1 and 67. Although intuitively it could be considered that condition 1 is the most unfortunate condition, given low levels of everything, it is not the one that takes the longest to understand across levels.
- Further, when comparing condition 45 and 99 , the effect of high worldview is very similar to the effect of high knowledge when problem and WO are at high settings (1223 and 1333 time units respectively). Conditions 13 and 67 are "close enough" (1818 and 2224 respectively) serving to speculate the effect of worldview and the effect of knowledge are similar when WO is low.
- Comparing table 5 and figure 35 , it is observed that more knowledge and/or more worldview speed up the understanding process at this level.

Table 9 shows a Mann-Whitney U test comparing conditions 45 and 99 that confirms the suspicion that high knowledge and high worldview, when the problem is at low and WO is at high setting, are equivalent. Mann-Whitney U test is used because these conditions are not normally distributed. Table 10, on the other hand, proves the suspicion that conditions 13 and 67 are equivalent under the same knowledge, worldview, and problem settings, with WO at low level.

	VAR00001
Mann-Whitney U	28513.500
Wilcoxon W	59888.500
Z	-1.694
Asymp. Sig. (2-tailed)	. 090

Table 9. Mann-Whitney U Test comparing Conditions 45 and 99 (Time)

Test Statistics ${ }^{\text {a }}$

	VAR00001
Mann-Whitney U	11638.000
Wilcoxon W	43013.000
Z	-12.141
Asymp. Sig. (2-tailed)	.000

a. Grouping Variable: VAR00002

Table 10. Mann-Whitney U Test comparing Conditions 13 and 67 (Time)

The effect of WO still needs to be evaluated in terms of time. It was shown that in terms of effort, it does not make a difference high or low WO. Comparing conditions 67 and 99 (same settings, but different WO) the Mann-Whitney U test shows that the two conditions are not statistically equivalent (Table 11). In other words, WO makes a difference in terms of time.

Test Statistics ${ }^{\text {a }}$

	VAR00001
Mann-Whitney U	11638.000
Wilcoxon W	43013.000
Z	-12.141
Asymp. Sig. (2-tailed)	.000

a. Grouping Variable: VAR00002

Table 11. Mann-Whitney U Test comparing Conditions 67 and 99 (Time)

The same can be said when comparing conditions 79 and 111 (Table 12).
Test Statistics ${ }^{\text {a }}$

	VAR000001 $^{\prime 2}$
Mann-Whitney U	17809.500
Wilcoxon W	49184.500
Z	-8.321
Asymp. Sig. (2-tailed)	.000

a. Grouping Variable: VAR00002

Table 12. Mann-Whitney U Test comparing Conditions 79 and 111 (Time)

Finally, note that although more knowledge and/or worldview in terms of effort do not mean better understanding, in terms of time apparently they do. However, note that, as it was previously mentioned, time is not the best variable to use for comparison within a level given that it does not abide by the same pattern as effort. One situation could be that condition 1 is better compared to another condition on a different level. This is explored later in the document.

Now, assessing whether the three types of understanding are equivalent to one another in level 1, as it is suggested by observation 1 (in terms of effort), presents a difficulty, which spawns from the normality of the data on WP-K and KW-P. Whereas for KP-W only condition 111 is not normally distributed, conditions $33,45,67$, and 79 are not normally distributed as well for either WP-K or KW-P. Figure 34 shows the means for level one for the three types of understanding.

Figure 34. Comparison of Means of KP-W, KW-P, and WP-K at Level 1 (Effort)

The data were not transfomed because at least one of the three types had a condition normally distributed. However, Figure 34 could be used to speculate, based on the data, and draw a conclusion:

- Depending on the condition, whereas some of the three types of understanding are equivalent, there are others were one type is better than the other. For instance, conditions 79 and 99 clearly show a major advantage of WP-K over its counterparts, in terms of effort. This advantage is not as obvious in conditions 1 and 13 for instance.

This speculation can be confirmed by comparing conditions 1, 13, and 99 for the three types of understanding. These conditions are the only ones, common to the three types that are normally distributed. Appendix F shows the test results when comparing conditions 1,13 and 99 respectively for the three types (Levene and F -Tests).

For conditions 1 and 13 the F test shows that the three types of understanding are statistically equivalent showing that one type is not better than the other. On the other hand, condition 99 shows that the three are not statistically equivalent, but KP-W and KW-P are. In addition, the mean of WP-K is significantly lower than its counterparts.

The Tukey HSD (honestly significant difference) test compares condition 99 for the three types of understanding and shows the equivalence of KP-W and KW-P (type 1 and 2 respectively in Table 13). By type 3 (WP-K) having the lowest value and being statistically different from KP-W and KW-P, it can be concluded that WP-K takes less effort than its counterparts for condition 99.

Effort				
	Type	N	Subset for alpha $=.05$	
			1	2
Tukey HSDa	3	250	26.7560	
	2	250		29.4080
	1	250		31.0640
	Sig.		1.000	. 192

Means for groups in homogeneous subsets are displayed
a. Uses Harmonic Mean Sample Size $=\mathbf{2 5 0 . 0 0 0}$.

Table 13. Tukey HSD Comparing Condition 99 for KP-W, KW-P and WP-K at Level 1

A possible explanation of why WP-K is better than its counterparts lies in the availability of knowledge when WP-K takes place. For WP-K, when problem and worldview are at low settings, there is an abundance of K for the matching when the problem is being formulated (WP), whereas for KP-W and for KW-P there is a low availability of W. The low setting of W has an impact when it is needed for KP and when K needs to be formulated (KW). This result is counterintuitive because one would expect that the types that benefit the most from high settings of knowledge are KP-W and KWP, not WP-K. In addition, WP-K has the added benefit of a high WO that KP-W cannot capitalize on.

Another interesting point for discussion is condition 111. This condition shows that KP-W is better than WP-K and WP-K is better than KW-P despite high settings of K and W. Given that condition 111 is not normally distributed, a non-parametric test is used to compare two types of understanding at the time. When comparing KP-W and KW-P, a Mann-Whitney U test shows that they are different ($p<0.05$) as seen in Table 14.

Test Statistics ${ }^{\mathbf{a}}$

	VAR00001
Mann-Whitney U	27428.000
Wilcoxon W	58803.000
Z	-2.367
Asymp. Sig. (2-tailed)	.018

Table 14. Mann-Whitney U comparing Condition 111 for KP-W and KW-P

However, when comparing KP-W with WP-K and WP-K with KW-P, they are statistically equivalent according to the same test (Table 15 and Table 16 respectively). It seems counterintuitive that KP-W is better than KW-P if K and W are at high settings. The explanation is the same as in the previous case. There is an abundance of W for KPW when needed. KW-P is the worst because the abundance of both knowledge and worldview increases the chances for mismatch generating more not-understanding.

Test Statistics ${ }^{\text {a }}$

	VAR00001
Mann-Whitney U	28639.500
Wilcoxon W	60014.500
Z	-1.617
Asymp. Sig. (2-tailed)	.106

a. Grouping Variable: VAR00002

Table 15. Mann-Whitney U Test comparing Condition 111 for KP-W and WP-K

Test Statistics ${ }^{\text {a }}$

	VAR00001
Mann-Whitney U	29819.000
Wilcoxon W	61194.000
Z	-.886
Asymp. Sig. (2-tailed)	.375

a. Grouping Variable: VAR00002

Table 16. Mann-Whitney u Test comparing Condition 111 for KW-P and WP-K

Two important conclusions can be drawn so far:

- Although the three types of understanding are equivalent, it remains to be shown if it is the general case. It is shown that each condition must be evaluated to establish which type is better.
- In addition, it is not necessarily about what factor, knowledge, worldview, problem or WO, is high or low. It is about the combination of factors when they are at high or low settings. This is the reason why each condition must be evaluated independently when comparing KP-W, KW-P and WP-K.

Assessing whether the three types of understanding are equivalent to one another in terms of time presents a major challenge because, unlike the analysis of effort, time distributions are not normally distributed in their great majority (see Appendix E).

As with effort, we can draw speculations based on the data. Figure 35 shows the means for level one for the three types of understanding in terms of time.

It can be observed that the three types have a similar overall behavior with the exception of condition 1. It is noted that although overall behavior is similar, at the condition level it may be very different given issues of the scale of the axis used in the graph. This is shown in Figure 36 where most means may not be comparable. However, it can be observed that in most conditions KW-P performs faster than the other two types.

Figure 35. Comparison of Means for KP-W, KW-P, and WP-K at Level 1 (Time)

Figure 36. Comparison of Means for KP-W, KW-P, and WP-K at Level 1 (Scaled 1)

Comparing condition 67 for the three types of understanding KP-W, KW-P, and WP-K, the Kruskal-Wallis Test shows that the three types are not statistically equivalent (Table 17). From the graph, it can be concluded that KW-P performs better than its counterparts. On the other hand, when comparing the three types for condition 45, the Kruskal-Wallis Test shows that they are statistically equivalent (Table 18). For this condition, their performance is equivalent.

Test Statistics ${ }^{\text {a,b }}$

	Time
Chi-Square	224.206
df	2
Asymp. Sig.	.000

a. Kruskal Wallis Test
b. Grouping Variable: Type

Table 17. Kruskal-Wallis Test for Condition 67 (Time)

Test Statistics ${ }^{\text {a }}{ }^{\text {b }}$

	Time
Chi-Square	.896
df	2
Asymp. Sig.	.639

a. Kruskal Wallis Test
b. Grouping Variable: Type

Table 18. Kruskal-Wallis Test for Condition 45 (Time)

This concludes the analysis of level 1^{4}.

4.6 THEORY BUILDING FROM DATA ANALYSIS

Generalizing from the data, it is shown that an individual's effort to understand always converges to one of seven levels. This is an emergent output. Out of 128 different initial

[^2]conditions representing at least 128 different individuals only seven levels of effort emerged. 128 conditions are due to combinations of knowledge, worldview, problem, and time constraint. Given that effort is seen as the difficulty of a problem to be understood by a particular individual, it makes sense to establish that the higher the effort the more complex the person considers the problem. In other words, levels of effort can be seen as subjective levels of complexity.

These levels are not equidistant from one another. Level 6 is greater than level 5, but level 7 is much greater than level 6 . This implies that an individual at level 7 will have much more difficulty understanding a problem than an individual at level 5 , for instance.

What makes one level more complex for one individual than another is the alignment and balance of knowledge and worldview types with respect to problem type. It is about the number of the three types of statements when matched. Succinctly, when comparing two levels or conditions across levels, one should look at each initial condition given that the number of statements may increase the chances of mismatching. This is shown in Table 19.

Level	K-Alpha	K-Beia	W-Alpha	W-Beta	P-Alpha	P-Beta	Example.
$\mathbf{3}$	High	High	Low	High	Low	High	$\mathrm{C} 108: \mathrm{Ka}_{\mathrm{a}}, \mathrm{K}_{\beta}, \mathrm{W}_{\beta} / \mathrm{P}_{\beta}$
$\mathbf{5 a}$	High	Low	Low	High	Low	High	$\mathrm{ClO6:} \mathrm{~K}_{\beta}, \mathrm{W}_{\beta} / \mathrm{P}_{\beta}$
$\mathbf{5 b}$	High	Low	Low	High	Low	High	$\mathrm{Cl} 2: \mathrm{Ka}, \mathrm{W}_{\beta} / \mathrm{P}_{\beta}$
$\mathbf{7}$	High	Low	High	Low	Low	High	$\mathrm{C} 8: \mathrm{Ka}, \mathrm{Wa}_{\mathrm{a}} / \mathrm{P}_{\beta}$

Table 19. Balance of Statements

Considering alignment, comparing level 7 with level 5b, for instance, it is observed that having W_{β} instead of W_{α} reduces the level of effort (less mismatching
among the three types of statements). However, comparing level 5b and 5a (two conditions within the same level), changing K_{α} for K_{β} does not make a difference. Yet adding K_{α}, a reduction of effort is observed. This is due to balance. K_{α}, even though it does not compensate for P_{β}, it does compensate for P_{α} despite their low numbers. The concept of alignment and balance also suggest that one level is not more complex than another because of how high or how low the number of statements is. Level 4, for instance, presents high numbers of P_{α} and P_{β} with low and high numbers of $K_{\alpha}, K_{\beta}, W_{\alpha}$, and W_{β}. Yet, there are another three levels, above and below, where more and less effort is required to understand.

Alignment explains why systems engineering, for instance, is considered to be better addressed by knowledge about structure with worldview about structure. However, it also highlights the need to balance knowledge and worldview about structure with knowledge or worldview about behavior. This insight also suggests that the systemic idea that more elements imply more complexity, within understanding, is not the general case. When something has few elements and yet difficult to understand explains why emergence is difficult to predict and understand. In this case, complexity is not about the number of parts, but about their emergent behavior and the knowledge and worldview to recognize that emergence. If seen by the number of parts, problems with many parts are considered extremely complex. However, if the problem is looked by the emergence of the parts, the problem becomes simple.

Another insight is about the common idea that more knowledge implies more understanding. Data show that this is not the case. Level 1 and level 4 show that under same problem conditions, effort does not decrease due to higher knowledge and/or worldview. All reduces to the concept of alignment and balance.

Insight this far has been gathered from analysis of effort to understand on one type of understanding (mostly KP-W). Time to understand and comparing types of understanding (KP-W, KW-P, and WP-K) provide three main insights. The first is that higher time does not necessarily imply higher effort. In other words, because a person takes longer to understand, does not mean that it requires more effort. This sounds
counterintuitive. However, this is due to a low number of statements that need to be matched. Nonetheless, the problem is still considered complex by that individual because it took a long time to be understood. Time then becomes a factor of why a problem may be considered more complex for one individual than for another. This case can be observed in condition 4 in level 6. Conversely, less time does not necessarily imply less effort. This can be observed in condition 24 in level 7. The second insight states that unlike effort, a larger number of the three types of statement imply less understanding time. Further, given that KP-W and WP-K depend on time restrictions, more time implies faster understanding. This is not the case for KW-P as it does not depend on time. The third insight relates to the fact that one type of understanding may be better than another depending on the initial conditions. For instance, KW-P in most cases performed better in terms of time than its counterparts. However, in most cases it performed worse in terms of effort compared to its counterparts. Condition 8 in level 7 shows this case. This shows that an individual should consider, besides the initial condition, the type of understanding it uses in order to better understand.

Considering effort and time, and also by the comparison of the three types of understanding it is shown that understanding can be subjectively quantified. This is possible in the ideal case where the number of statements of knowledge, worldview, and problem can be quantified as well. An individual may be able to predict the amount of time or effort it takes to understand a problem. Further, the individual could also predict which type of understanding is better depending on the problem at hand, considering available knowledge and worldview.

Finally, if an individual were to consider effort, time, and type of understanding, it may be able to pinpoint conditions where understanding is easier or more difficult to achieve. In other words, a combination of such elements could lead to better understanding which consequently leads to less complexity.

4.7 SUMMARY OF TOWARDS A GENERAL THEORY OF UNDERSTANDING

This section presented an initial general theory of understanding (GTU). It is called general because it explains the two existing schools of understanding found in the body of knowledge. In addition, it shows a new third school of thought. To build the GTU, insight from a built axiomatic structure and insight from data are used. The axiomatic structure provides a precise way of defining understanding through the definition of terms such as knowledge, worldview, and problem. In addition, a theoretical representation of the axiomatic structure is provided in the form of the Understanding Construct (UC). Through the use of the UC a simulation is created. Data are obtained from the simulation insights drawn. Using effort to understand as a metric, it is shown that different individual profiles converge to only seven levels of effort to understand. Levels of effort show that individuals consider problems more complex at higher levels than at lower levels. Consequently, understanding contributes to a problem being more or less complex. Figure 37 shows some of the main contributions of this work to the body of knowledge (BOK).

Figure 37. Contribution of General Theory of Understanding to BOK

5 DERIVED THEORETICAL IMPLICATIONS

Understanding's overarching umbrella covers a wide spectrum of individuals encompassing scientists, politicians, and regular people. When scientists do research, they match their knowledge to problems under a particular worldview. The worldview, in this case, becomes their form of justifying their scientific endeavors. When politicians propose reforms, they match their knowledge to constituents' problems under the worldview of their political party which in terms is supported by their own. Regular people's process of understanding is no different from scientist or politicians. There is still the same process of matching knowledge and worldview to day-to-day problems. The concept of understanding is one of the few that has many ramifications on day to day life.

Figure 38 shows how the GTU provides insights not only about the phenomenon of understanding itself, but also how this phenomenon affects areas of interest to Engineering Management (EM). In terms of the concept of understanding, it contributes to the BOK by providing an explanation about the phenomenon. Areas of interest to EM, such as complexity and decision, benefit from this work by having understanding as a common thread.

Figure 38. Theoretical Implications of the GTU

Some of the main accounts of the different areas where this work has an impact are presented in the following sections.

5.1 ON UNDERSTANDING

An unambiguous concept of understanding was proposed by providing a set of formalized bases. The concept allows the researcher to answer four basic questions: What is understanding? What does understanding do? How does understanding do what it does? Why does understanding do what it does? The answers to these questions are:

- As a process, understanding is the matching of knowledge, worldview, and problem.
- As an output, understanding is the result of the assignment of a truth value to a problem.
- Understanding does assign truth values to problems.
- The process of the matching, how, occurs in one of three forms: KP-W, understanding a problem through knowledge application; KW-P, understanding a problem through knowledge formulation; and WP-K, understanding a problem through the formulation of the problem.
- Understanding assigns truth values to problems because it creates knowledge.

Ontologically, understanding is presented as a duality by providing process and substantive perspectives. This covers the two predominant perspectives in the body of knowledge when describing understanding.

Understanding provides the creation of knowledge and worldview. Understanding creates knowledge because when problems are assigned truth values, by definition, they become knowledge. This has a direct impact in Knowledge Management (KM) where the Knowledge Conversion process (Nonaka \& Takeuchi, 1995) is widely
accepted as a knowledge creation process. Understanding creates worldview because what was understood can be communicated through an explanation. An explanation is a statement about statements which by definition is a worldview. This presents understanding not only as a knowledge creation process, but also as a worldview creation process. Worldview is not considered within the definition of understanding given that, in the general case, it cannot be assessed. Understanding as a worldview creation process is of particular importance given that in the body of knowledge there is no indication of a particular process that generates worldview. Further, the consideration of understanding as a knowledge creation process, although intuitively correct, can now be explained based on the definitions provided. It is important to note that knowledge created through understanding would not abide by epistemology's definition of knowledge as justified true belief from a correspondence point of view. This is because knowledge, when created by understanding under this model, has not been externally justified and truthfulness has not been evaluated. However, it does fulfill the definition of justified true belief from a coherent point of view given that it is only the understanding of one person. That individual builds a system of premises out of the matching of its knowledge, worldview, and problem.

Assessment of what was understood is sought after in the body of knowledge. However, it is always under the assumptions of objectivity and a knowable problem. Within a problem situation, by definition, nothing can be objectively defined or completely known given different understandings and reality limitations. A basic subjective evaluation of what was understood is simply the yes/no answer to the questions, "Did you understand?", "Did you not understand?" or "Were you able to understand?" Misunderstanding cannot be evaluated within a problem situation either. By definition, misunderstanding is the number of statements with wrongly assigned truth values out of the ones that needed assignment. Misunderstanding can be evaluated then within an objectively defined problem with a known solution.

Another important implication of the theory, relates to appropriateness. Unlike the perspective suggested in Moore and Newell (1974) whose consideration of
appropriateness of understanding is only when the resulting assignment of truth value is true, this theory considers when the assignment is false. This says that notunderstanding is a form of understanding where the individual is aware that it did not understand. This is consistent with Nickerson (1988) when he says that "awareness of ignorance - at one level can be evidence of understanding at another level." Besides appropriateness, other three conditions of understanding were defined: existence, capacity, and relevance. These are also of great importance. If one of the main components, problem, knowledge, or worldview, is missing then the person is not able to understand. Not being able to understand is different from not-understanding. In the former, understanding or not-understanding will not be achieved for any of three reasons: a problem was not perceived, there is no knowledge that is relevant to the problem, or there is no worldview relevant to the problem. It is emphasized that understanding as well as not-understanding depend on all three at the same time: knowledge, worldview, and problem.

A person can, for instance, have knowledge and not understand a problem. This is because at the very least, the person must have had understood relevant knowledge to the problem first. The subjective test case here is to say that if a person understood a problem then at least the knowledge used to understand the problem is also understood.

5.2 ON SHARED UNDERSTANDING

Considering two individuals at different effort levels, an individual at level 1, for instance, may believe that $s / h e$ understood better than someone at level seven. In a group dynamic the first individual may judge itself better able to understand a problem at hand than the second one. However, this is not necessarily the case because individuals are departing from different problem formulation, knowledge base, and worldview base. Therefore, what it was understood cannot be objectively assessed and much less compared. This lack of assessment and consensus, typical of problem situations, may not only be about social problems. For instance, if an individual is
understanding a problem about behavior, it is agreed in the body of knowledge that consensus with another individual is very unlikely because of the nature of the problem. Data show that even if the problem is about structure, when individuals are at extreme levels of effort, reaching a consensus seems to be extremely difficult. Different worldview and knowledge are at play when a person is understanding a problem. Consensus implies that worldview and knowledge among individuals, even when it relates to problems about structure, need to be the same. Going even further, if one person is understanding a problem as a problem about behavior, while the other is understanding it as a problem about structure consensus is also very unlikely. This suggests that problem situations can be about technical problems when people refer to different solutions depending on their knowledge and worldview.

These arguments lead to the idea that problem situations may be about lack of shared understanding. This suggests that shared understanding is good but perhaps difficult to achieve.

In the hypothetical case, when an individual desires to develop a metric that assesses what was understood on a particular problem, conditions require the assessment to be bounded. Some basic conditions could be:

- Define statements (knowledge, problem, and worldview) for each individual involved in the problem.
- Assess the common ones.
- Allow individuals to match statements.
- Assess the types of understanding used.
- Compare explanations and knowledge generated.

In reality, generating this list is very unlikely. When referring to shared understanding, based on the proposed definitions, this is what individuals do. How it is done is not clear in this research. However, what it is clear is the extreme difficulty of achieving such a concept.

As with understanding, shared understanding is a commonly used concept yet its implications are overlooked. In order to have some degree of shared understanding, one must guarantee that, besides having common knowledge, problem, and worldview among the people involved, a common match must exist. In other words, if shared understanding is defined as the intersection of matching then the intersection cannot be an empty set.

Shared understanding, or lack thereof, can be blamed for many failed projects. From this perspective, assuming shared understanding among individuals assumes these individuals have a common knowledge base, common worldview base, and common perception of a problem. In addition, it assumes they share the way the three were matched. As it can be inferred, assumption of one may be damaging enough. On the other hand, considering that different worldview may be beneficial to make decisions, the question of whether shared understanding is beneficial to decision making needs to be formulated. This seemingly opposite view can be explained by differentiating consensus from shared understanding. Whereas consensus about decisions may be needed to enact decisions affecting a group, different understanding, or lack of shared understanding, may be the best output even if it hurdles consensus. This situation may be deemed acceptable in organizations when different individuals bring different perspectives and expertise to a discussion. In these situations, it is accepted that no one has full understanding about the situation at hand and that anyone may be right or wrong. This is characteristic of problem situations.

5.3 ON THE ROLE OF UNDERSTANDING IN COMPLEXITY

A major contribution of this work is the premise that highlights understanding as a key human component of complexity. Complexity is an issue of interest to systems engineers and project managers among others.

Within projects and in day-to-day activities, problems are understood differently by different people. This is especially true when it comes to problem situations. What this work suggests is a way of subjectively assessing complexity through understanding.

Using effort to understand as a metric, an individual is able to categorize how high or how low the difficulty of understanding the problem is. For instance, if knowledge elicitation techniques are extended to worldview and problem elicitation then such subjective evaluation is feasible by considering the types of statements (alpha or beta). In addition, it is feasible to assess how long it may take to understand such a problem. In both cases it is a probabilistic assessment based on the number of statements.

A metric could also be useful to better define strategies to improve understanding. If an individual is able to assess in which level of effort it is placed, strategies that allow it to move from higher to lower levels could also be devised. Among these strategies could be to target switching or acquisition of suitable worldview, switching or acquisition of suitable knowledge and even considering extending the scope of the problem to consider both problems about structure and behavior. Further, the strategies could also consider which type of understanding to use in order to make the process more efficient or possibly more effective.

It is safe to assume that some conditions for an individual, given a problem, are more conducive to understanding or to better understanding, than others. Trainers and decision makers may be interested in reducing the complexity of a problem for a particular individual. This leads to the design of strategies that, considering the same problem for an individual, it may be able to adjust into or gain new worldview, acquire or consider other existing knowledge. If this is the case, the goal is to decrease the level of effort that it takes for an individual to understand. This is the inverse situation to say, what conditions could lead an individual to better understanding.

From this perspective, trainers and decision makers, for instance, may be interested in focusing on assessing the number of statements an individual has reflecting amount of knowledge, worldview, and problem. More importantly, they may be interested on how to change these amounts to a desired level given the same problem for that individual. For instance, looking at conditions 8 and 12 , it is shown that the individual needs to switch worldview to effectively move from level 7 to 5. Moreover, looking at conditions 12 and 108 the individual needs to acquire more
experience to move from level 5 to 3 . Table 20 shows the previously mentioned example.

Level	K-Alpha	K-Beta	W-Alpha	W-Beta	P-Alpha	P-Beta	Example
$\mathbf{3}$	High	High	Low	High	Low	High	$\mathrm{C} 108: \mathrm{Ka}, \mathrm{K}_{\beta}, \mathrm{W}_{\beta} / \mathrm{P}_{\beta}$
$\mathbf{5}$	High	Low	Low	High	Low	High	$\mathrm{C} 12: \mathrm{Ka}, \mathrm{W}_{\beta} / \mathrm{P}_{\beta}$
$\mathbf{7}$	High	Low	High	Low	Low	High	$\mathrm{C} 8: \mathrm{Ka}, \mathrm{Wa}_{a} / \mathrm{P}_{\beta}$

Table 20. Reducing Complexity through Better Understanding

In this example, condition 8 has a high number of known statements about structure (K_{α}), and a high number of statements about structure about statements (W_{α}) on a high number of unknown statements about behavior $\left(\mathrm{P}_{\beta}\right)$. To move from level 7 to level 5 it is at least required that the individual changes to statements about behavior about statements $\left(W_{\beta}\right)$. If the interest is to move from level 7 to level 3 , then the individual not only need to switch from W_{β} to W_{α}, but also acquire K_{β}. This is considering the initial perception of the problem is kept.

This insight provides trainers and decision makers what they need to reduce the complexity of a problem for an individual. It may be cheaper or easier to send the individual to learn new knowledge, which is what traditionally is done. However, it may not be as simple to train for switching or acquiring new worldview. This also shows that in the ideal case where the number of statements of knowledge, worldview, and problem, can be quantified an individual may be able to predict the amount of effort it takes to understand a problem.

Engineering Managers are focused on improving the state of things, in this case, possibly improving understanding. However, the converse is also true; Engineering Managers may purposefully present problems to people where effort to understand is
high. This could be of use in training, for instance, where the need to switch worldview or change the scope of problems could be of use in decision making activities. This is supported by the decision-making literature. It has been shown that problems under stress are possibly solvable when worldview is switched. From the proposed definitions, a switch in worldview undoubtedly leads to changes on problem and knowledge formulation. All these aspects prompt to consider besides training for acquisition of knowledge and worldview, to consider strategies for worldview creation and worldview switching

5.4 ON UNDERSTANDING AND CONCURRENT PROCESSES

Understanding is an integral part of concurrent cognitive processes. This explains why, in the literature, understanding is convoluted with some of these processes. The GTU provides a way to differentiate the process of understanding from these processes.

The first process with which understanding is embedded is that of perception. Perception posits how an individual senses her/his surroundings. Worldview for instance is considered in the body of knowledge as a form of perception. However, worldview, from the literature as well, is also about describing reality. Perception in this case is affected or steered by worldview in terms of predispositions or predominant worldview. An individual may choose to deal with one type of problem over another because $s / h e$ is predisposed to see the one s/he is predisposed to. This is explained by Bozkurt et al. (2007) and Bozkurt (2009). Through perception, an individual has access to reality and to this extent, it is used for decision making and/or learning. Decision making in this case could be a reactive process based on perception. In terms of learning, perception provides access to knowledge. In terms of understanding, perception provides, at the very least, access to problems.

Understanding is also associated with problem solving, decision making, and learning. Seeing problem solving as the execution of a solution and decision making as the evaluation of solutions, a solution is either a possible output of or input to the process of understanding. In the former, understanding assigns truth value to problems
in order to generate a solution. In the latter, the solution is the problem whose truth values need to be evaluated. This explains Rittel and Webber's (1973) statement of "the information needed to understand the problem depends on one's idea for solving it." This says that a solution is a problem that needs to be understood.

Seeing learning as the acquisition of knowledge, understanding is then the use of knowledge. Therefore, knowledge must have been learnt to understand. In addition, understanding generates knowledge that may or may not be learned.

In connecting the processes of perception, learning, decision making, problem solving, and understanding, Sterman (1994) presents a description of this connective process as learning:

All learning depends on feedback. We make decisions that alter the real world; we receive information feedback about the real world, and using the new information we revise our understanding of the world and the decisions we make to bring the state closer to out goals.

However, in Sterman's description there is a description of each one of the mentioned processes. Using Sterman's description as a baseline and based on working definitions, the connective process can be presented as: learning depends on feedback from the enactment of our understanding in the form of solutions. These solutions alter the real world; we observe these changes and using these changes as new knowledge and problems we revise what we had understood of the world. This revision of understanding results in the revision of our solutions which brings us closer to our goals. This description uses the definitions of knowledge and problem only.

In this process:

- Understanding generates knowledge (of solutions).
- This knowledge is enacted in decision making.
- Reality is altered due to decision making.
- Changes in reality are observed.
- From these changes knowledge and problems are learned.
- New knowledge and newly found problems are used to revise understanding.

From this process, not only do we acquire knowledge through learning but also problems and worldview. Individuals can learn about the existence of problems through feedback, perception, or by being told about them. These problems may or may not affect the individuals. If individuals are affected by these problems, then they may decide to understand them and/or take action on them. Individuals can learn worldview by cultural, political, educational, or religious influences among others. This process can be further expanded. For instance, the individual learns about problems through feedback, perception, or simply being told about them. Problems can also be generated by the process of understanding when it is being revised. In this case, something that was considered knowledge can now be re-evaluated and it can be decided that the assigned truth value is neither true nor false. Then knowledge becomes a problem.

Process-wise, this connective process can be seen as: through sensation/intuition (perception) new knowledge, problem, and worldview are acquired (learning); knowledge, problem, and worldview are matched (understanding), action or reaction (decision making/problem solving) is taken based on perception, learning, or understanding. Object-wise, through sensing/intuition knowledge, worldview, and problem are perceived and learnt. Understanding uses learnt knowledge, worldview, and problem and generates knowledge, worldview, and problem. The knowledge and worldview generated are used to solve problems or make decisions. Worldview is also used to reshape perception. Object-wise, this process represents an autopoietic process when it generates the elements needed to make the process work, in this case, its own input.

Understanding is at the heart of this autopoietic process by being autopoietic itself; understanding generates knowledge, worldview, and problem. It generates knowledge and feeds on it to yet create new knowledge. It generates worldview and
feeds on it through its own explanations about the world to create new explanations. Finally, it generates problems when re-evaluating knowledge and feeds on them to generate new ones. In this case each knowledge, worldview, and problem may create knowledge, worldview and problem. However, this is a pure rationalist argument where the process feeds itself. Given that individuals deal with reality, this is not the general case. This is a reason why understanding needs the other processes; to make decisions and learn in order to revise what was understood. The interaction with the environment is needed to maintain the autopoietic process running.

5.5 ON AGENT-BASED MODELING AND SIMULATION

The implications on ABM are twofold: one methodologically corresponding to M\&S and the second corresponding to the design of agents. In terms of methodology, this work uses agents for theory building. Traditionally, agents are used to build theory out of the identification of single rules from observations of the phenomenon of interest. These rules create emergent patterns that give rise to the new theory. In this work, the phenomenon is not observed. Single rules about the phenomenon are obtained from existing theories instead. Like the traditional case, emergence is observed and used to build new theory. Further, while simulation provides emergence, modeling provides a traceable axiomatic structure that formalizes the theory building process.

This methodological approach provides researchers with new ways of exploring little understood phenomena, especially where little theoretical consensus exists. This is of special interest to EM given the soft nature of many topics encountered within the discipline. In this case, it opens the possibility to formalize soft topics that are usually conveyed through argumentative means. In other words, it provides an objective means for discussing soft topics.

In terms of the design of agents, according to Tolk and Uhrmacher (2009), understanding is at the core of an agent in the form of sense making. Further, they relate sense making to processes such as perception and decision making within an agent. This relation similarly describes the autopoietic process suggested in the previous
section. Tolk and Uhrmacher (2009) present an architectural framework addressing the main agents' characteristics. This framework was covered in section 3. The autopoietic process could contribute to the framework by considering:

- Worldview affecting perception through predispositions.
- Memory storing learnt knowledge, worldview, and problem from the environment.
- Decision making and problem solving considered as one process called action generation.
- Perception, learning, and understanding affecting action generation.
- Adaptation being removed as it could be considered a function of perception, learning, understanding, and action generation.
- Understanding taking the place of sense making and affecting and being affected by perception, learning, and action generation.

5.6 SUMMARY OF DERIVED THEORETICAL IMPLICATIONS

This section presented the main contributions to and implications of the GTU on the topic of understanding and on areas of interest to Engineering Management (EM).

In terms of understanding, the GTU allows for defining related concepts such as those of misunderstanding, lack of understanding, and inability to understand. Additionally, understanding is presented as a knowledge and worldview creation process. This has a direct implication on Knowledge Management (KM). KM is of importance to organizations as they become more knowledge centric and knowledge is considered an asset. The contribution of the GTU to EM is covered in areas such as complexity and decision making among others. In complexity, for instance, through insight drawn from the analysis of data it is shown that different people, within a problem situation, converge to seven levels of effort to understand. Effort to understand can be seen as a metric of how complex a problem is to a person. It is also shown that understanding is crucial to processes such as learning and decision making.

6 CONCLUSIONS AND FUTURE WORK

In conclusion, a review of the literature showed that a general case of understanding has not been established. To provide a solution, this dissertation presented a theory that explains the concept of understanding. The proposed general theory of understanding (GTU) explains what understanding is, what it does, how it does what it does, and why. The theory is consistent with accounts from epistemologists, cognitive science, education, and AI researchers. Additionally, it establishes new insights on understanding and on areas of interest to Engineering Management. The GTU defines understanding and provides outcomes of understanding. The outcomes of understanding are assignment of truth values to problems, generation of knowledge and generation of worldview. Given a new set of definitions, the GTU eliminates ambiguity found in the body of knowledge where descriptions of the concept are prevalent. Further, a disassociation from the widely used definition of understanding as 'grasping' is emphasized.

The GTU provides three schools of thought regarding understanding. KP-W reflects a person understanding a problem through knowledge application. In this case, a person applies her/his knowledge to a problem assuming that this application can be explained. This explanation amounts to a formulation of a solution. KW-P reflects a person understanding a problem through knowledge formulation. In this case, the person seeks to formulate, via worldview, her/his knowledge. This formulation will allow her/him to understand the problem at hand. Finally, (WP-K) reflects a person understanding a problem through the formulation of the problem. In this case, the person seeks to formulate, via worldview, the problem at hand. Two of these schools of thought, KP-W and KW-P, are found in the body of knowledge. KP-W is espoused by epistemologists, cognitive scientist and educational researchers. KW-P is espoused by Al researchers. WP-K is not found in the body of knowledge making it one of the main findings of this work. Through the GTU it is made clear and explicit that what was considered understanding is not one understanding, but three.

The GTU suggests metrics to subjectively assess understanding, one of them is effort to understand. Effort to understand is simply a counter that updates every time a person says $s /$ he does not understand. As soon as the counter stops, it is a reflection of the person having understood the problem completely. Through the use of effort to understand it is shown that different understandings from different individuals converge to only seven levels of effort. These levels emerged from different initial conditions reflecting different individuals or different initial states within one individual. Levels 1 through 4 reflect low effort to understand by an individual, levels 5 and 6 reflect a moderately high effort to understand compared to levels 1 through 4, and level 7 shows an extremely high effort to understand compared to previous levels. The GTU drew from this emergent outcome to generalize that the higher the effort the more complex the person considers the problem. The consideration of different understandings and different levels of effort is consistent with problem situations. From these seven levels, the GTU shows that accepted ideas, such as more elements imply more complexity are not the general case. It is shown that there are levels where there are large numbers of defined problems, yet the problems are understood with less effort. Moreover, the idea that more knowledge implies more understanding is shown not to be the case. It is shown that it is more about the balance and alignment of the number of different types of statements than about the number of statements.

The GTU provides further insight into problem situations by considering the implications of shared understanding. It is shown that shared understanding is not only difficult but also not necessarily beneficial. Achieving shared understanding does not only need respective matching of knowledge, worldview, and problem to occur, but also "the matching of the matching" of different understanding among individuals need to occur. Unlike shared understanding, lack of shared understanding may be beneficial to decision making. In the hypothetical case when people share understanding it is implied that they share worldview as well. It is known that different perspectives are beneficial to group decision making. Ergo, lack of shared understanding should also be beneficial.

The GTU provides ways to differentiate perception, learning, decision making, and problem solving from understanding by seeing the connection of these processes as an autopoietic system. This system allows an individual to use and generate knowledge, worldview, and problem and through input-output of these parameters differentiate these processes from understanding, The GTU suggests that through sensing/intuition the person perceives reality and learns about knowledge, worldview, and problem. Understanding uses learnt knowledge, worldview, and problem and generates knowledge and worldview. Knowledge and worldview generated are used to act on problems, via problem solving or decision making, or simply learn. The enacted action changes reality generating knowledge and problem. With these changes learning occurs and understanding is revised. The revision of understanding, due to feedback, may change existing or new knowledge into a problem. This makes understanding a problem creation process. Finally, perception is constantly reshaped by understanding creating and revising worldview.

Through the presented autopoietic process, the GTU provides insight into designing agents as highlighting main processes and the inputs and outputs of these processes. This suggests the development of possible alternatives of an agent's architecture design. Further, the characterization of understanding, presented by the GTU can be used in existing architecture of agents that have perception, learning and decision making capabilities.

Lastly, the GTU provides a structured way to create theory out of theory using $\mathrm{M} \& S$, especially through the use of agents. This approach provides researchers with new ways of exploring poorly understood and complex phenomena opening the possibility to formalize soft topics that are usually conveyed through argumentative means.

Future work in or using the concept of understanding within EM presents different options. Some of the suggested research questions, from short to long term, are:

- How can the Understanding Construct be used to improve decision making? Given that EM's areas of interest rest on the ability to make decisions, this question would seek insight into the details of how understanding affects decision making and how it can be used to make better decisions. This question also extends to defining the conditions needed to make decisions when full understanding is not feasible within an allocated amount of time.
- Under what conditions is shared understanding good for group decision making? This question would seek insight into what conditions shared understanding is favorable and not favorable with regards to decision making and when those conditions should and should not be in place. It is hypothesized that shared understanding diminishes the effectiveness of decision making. Lack of shared understanding is hypothesized to be more beneficial to decision making given that it considers alternatives prompted by different understanding.
- How does training need to be conducted to maximize understanding not only in terms of knowledge but also in terms of worldview? This question seeks insight into how trainers can maximize trainees' ability to make decisions under different conditions based on prompt knowledge evaluation and possibly worldview adjustment.
- Does exposing trainees to conditions of high effort foster adaptation? If not, what fosters adaptation of knowledge and worldview? This is a follow up question to the previous bullet. This question seeks insight into how trainers can foster trainees' ability to adapt under different conditions. It is hypothesized that trainees trained under repeated high effort conditions will be able to switch worldview, for instance, when required. This is important for decision making given that if switching of worldview is considered, an individual may consider options obviated before.

Some of these questions can be approached through M\&S, as done in this work or through experimentation depending on the access to data and ways of measuring observed constructs. In addition, some of these questions may be of interest to other disciplines such as Cognitive Science or M\&S making them truly multidisciplinary if done in conjunction with engineering managers.

Finally, the reason why future work is presented as research questions stems from the author's belief that any research endeavor ought to generate more questions than it started with. This provides growth potential for the body of knowledge in a particular discipline and material for future generations of researchers. Further, new questions should provide grounds for theoretical and empirical research advancement. In other words, a path for future theoretical development and hypothesis testing should be laid down. These reflections make future work indeed part of the contribution of any research to the body of knowledge.

REFERENCES

Abrahamson, D., \& Wilensky, U. (2005). Piaget? Vygotsky? I'm game!: Agent-based modeling for psychology research. Paper presented at the annual meeting of the Jean Piaget Society, Vancouver, Canada.

Ackoff, R. (1974). The systems revolution. Long Range Planning 7, 2-20.
Aerts, D., Apostel, L., De Moor, B., Hellemans, S., Maex, E., Van Belle, H., \& Van der Veken, J. (1994). World Views: From Fragmentation to Integration. Brussels: VUB Press.

Alberts, D. \& Hayes, R. (1995). Command Arrangements for Peace Operations. Washington D.C: CCRP Publication Series.

Albiero, F., Fitzek, F., \& Katz, M. (2007). Introduction to NetLogo. In F. Fitzek \& M. Katz (Eds.) Cognitive Wireless Networks (p. 579-602). The Netherlands: Springer.

Allee, V. (1997). The knowledge evolution: Expanding organizational intelligence. Boston, MA: Buttenworth-Heinemann.

Anderson, J. (1995). ACT - A simple theory of complex cognition. American Psychologist, 51(4), 355-365.

Axelrod, R. (1997). The complexity of cooperation. Princeton, NJ.: Princeton University Press.

Axtell, R. L. (2000). Why agents? On the varied motivations for agent computing in the social sciences. In C. Macal and D. Sallach (Eds.), Proceedings of the Workshop on Agent Simulation: Applications, Models, and Tools. Argonne, IL: Argonne National Laboratory.

Bahill, T. \& Daniels, J, (2002). Using object-oriented \& UML tools for hardware design: A case study. Systems Engineering, 6(1), p. 28-48.

Borshchev, A. \& Filippov, A. (2004). From system dynamics and discrete event to practical agent based modeling: Reasons, techniques, tools. Proceedings from the 22nd International Conference of the System Dynamics Society, July 25-29, Oxford, England.

Bozkurt, I. (2009). Developing a philosophical profile of the individual for complex problem-solving through agent-based modeling. Dissertation, Old Dominion University, Norfolk, VA.

Bozkurt, I., Padilla, J.J., \& Sousa-Poza, A. (2007). Philosophical profile of the individual, In Proceedings from the 19th IEEE International Engineering Management Conference (IEMC), Austin, TX. July 29 - August 1.

Dake, K. (1991). Orienting dispositions in the perception of risk: An analysis of contemporary worldviews and cultural biases. Journal of Cross-Cultural Psychology, 22, 61-82.

DAU (2001). Systems engineering fundamentals. Fort Belvoir, VA: Defense Acquisition University Press.

Davis, J., Eisenhardt, K., and Bingham, C. (2007). Developing theory through simulation methods. Academy of Management Review, 32(2), 480-499.

Davis, P. \& Anderson, R. (2003). Improving the composability of department of defense models and simulations. RAND Corporation: Santa Monica, CA.

De Regt, H. \& Dieks, D. (2005). A contextual approach to scientific understanding. Synthese, 144, 137-170.

Diallo S., Tolk A. \& Weisel E. (2007). Simulation formalisms: Review and comparison of existing definitions of key terms. Fall Simulation Interoperability Workshop. Orlando: IEEE CS Press.

El-Dirabi, T.E. \& Wang, B. (2005). E-Society Portal: Integrating urban highway construction projects into knowledge city. Journal of Construction Engineering and Management DOI: 10.1061, 1196-1211.

Fisher, R. (1960). The design of experiments. (7th ed.) New York, NY: Georges, G., L.
Flood, R. \& Carson, E. (1993). Dealing with complexity: An introduction to the theory and application of systems science. New York, NY: Plenum Press.

Ford, D. \& Sterman, J. (1997). Expert knowledge elicitation to improve mental and formal models. System Dynamics Review, 14(4), 309-340.

Franklin, R.L. (1981). Knowledge, belief and understanding. The Philosophical Quarterly, 31(124), 193-208.

Gilbert, N. \& Troitzsch, K. (2005). Simulation for the social scientist. New York, NY: Open University Press.

Gilbert, N. (2000). Models, Processes and Algorithms: Towards a Simulation Toolkit. In R. Suleiman, K. Troitzsch, and N. Gilbert. (Eds.). Tools and techniques for social science (pp. 3-16). Heidelberg: Physica-Verlag.

Gilbert, N. (2008). Agent-based models. Thousand Oaks, CA: SAGE Publications.
Grimm S.R. (2006) Is understanding a species of knowledge? British Journal for the Philosophy of Science. 57, 515-535.

Hester, P. \& Tolk, A. (2010). Applying methods of the M\&S spectrum for complex systems engineering. Proceedings from the Spring Simulation Conference. Orlando, FI. April 11-15.

Hubler, A. (2005). Predicting complex systems with a holistic approach. Complexity, 10(3), 11-16.

INCOSE (2007). Systems Engineering Handbook version 3.1.
Jackson, M.C. \& Keys, P. (1984). Towards a system of systems methodology. The Journal of the Operations Research Society, 35(6), 473-486.

Jennings (1999). Agent-based computing: promise and perils. Proceedings of the 16 th international joint conference on Artificial intelligence, pp. 1429-1436, Stockholm, Sweden.

Jung, C.G. (1968). Analytical psychology. Retrieved from the web on January 15, 2009 http://www.psych.utoronto.ca/users/peterson/PSY2302007/Jung.pdf.
Keating, C. (2008). Paradoxes in the engineering of complex system of systems. Proceedings from the $29^{\text {th }}$ American Society for Engineering Management National Conferenc. West Point, NY. November 12-15.

Keating, C., Padilla, J.J., \& Adams, K. (2008). System of systems engineering requirements: Challenges and guidelines. Engineering Management Journal, 20(4), 24-31.

Kelton, W.D., Sadowski, R., \& Sturrock, D. (2004). Simulation with arena. $3^{\text {rd }}$ edition. New York, NY: McGraw-Hill.

Klahr, D. (1974). Understanding Understanding Systems. In L. W. Gregg (Ed.), Knowledge and Cognition, (pp. 295-300). Potomac, MD: Lawrence Erlbaum Associates.

Klein, G. (1998). Sources of power. Cambridge, MA: MIT Press.
Klir, G. (1985). Complexity: Some general observations. Systems Research, 2(2), 131-140.
Koltko-Rivera, M.E. (2004). The psychology of worldviews. Review of General Psychology, 8(10), 3-58.

Kotnour, T. \& Farr, J. (2005). Engineering management: Past, present and future, Engineering Management Journal, 17(1),15-27.

Kuhn, D., \& Reilly, M. (2002). An investigation of the applicability of design of experiments to software testing. Proceedings of the 27 the Annual NASA/IEEE Software Engineering Workshop. NASA Goddard Space Flight Center. December 4-6. Lannes, W.,J. (2001). What is engineering management? IEEE Transactions on Engineering Management, 48(1), 107-115.

Leonard, N., Scholl, R., \& Kowalski, K. (1999). Information processing style and decision making. Journal of Organizational Behavior, 20(3), pp. 407-420

Mayer, R. (1989). Models for understanding. Review of Educational Research, 59(1), 4364.

Mitroff, I., Betz, F., Pondy, L.R. \& Sagasti, F. (1974). On managing science in the systems age: Two schemes for the study of science as a whole systems phenomenon. Interfaces, 4(3), 46-58.

Miyake, N. (1986). Constructive interaction and the iterative process of understanding. Cognitive Science, 10, 151-177.

Moore, J. \& Newell, A. (1974). How can Merlin understand. In L. W. Gregg (Ed.) Knowledge and Cognition (pp. 201-252). Potomac, MD: Lawrence Erlbaum Associates.

Nair, K. U., \& Ramnarayan, S. (2000). Individual differences in need for cognition and Complex Problem Solving. Journal of Research in Personality, 34, 305-328.

Negnevitsky, M. (2005). Artificial Intelligence: A guide to intelligent systems. Harlow, England: Addison-Wesley.

Nickerson, R. (1985). Understanding understanding. American Journal of Education, 93(2), 201-239.

Nonaka, I. \& Takeuchi, N. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. New York, NY: Oxford University Press.

Nonaka, I., Konno, N., \& Toyama R. (2001), Emergence of "Ba": A conceptual framework for the continuous and self-transcending process of knowledge creation. In I. Nonaka and T. Nishiguchi (Eds.) Knowledge emergence (pp. 13-29). New York, NY: Oxford University Press.

Ogren, I. (1999). On principles of Model-Based Systems Engineering. Systems Engineering, 3(1), p. 38-94.

Ören, T., Ghassem-Aghaee, N., \& Yilmaz, L. (2007). An ontology-based dictionary of understanding as a basis for software agents with understanding abilities. Proceedings of the 2007 Spring Simulation Multiconference, Norfolk, VA. March 2529.

Pears, D.F. (1971). What is knowledge? New York, NY: Harper \& Row.
Perkins, D.N., (1988). Art as understanding. Journal of Aesthetic Education. Special Issue: Art, Mind, and Education, 22(1), 111-131.

Plato (1999), Theaetetus, Project Guttenberg, Translation by Benjamin Jowett. Retrieved from the web on June 2006. http://www.gutenberg.org/dirs/etext99/thtus10.txt

Reiner, G (2005). Supply chain management research methodology using quantitative models based on empirical data. In H. Kotzab, S. Seuring, M. Muller, \&. Reiner (Eds.), Research Methodologies in Supply Chain Management (pp. 432-444). The Netherlands: Physica Verlag.

Rescher, N. (1996). Process metaphysics: An introduction to process philosophy. Albany, NY: State University of New York Press.

Rittel, H. \& Webber, M. (1973), Dilemmas in a General Theory of Planning, Policy Sciences, 4, 155-169.

Rowley, J. (2000). From learning organization to knowledge entrepreneur. Journal of Knowledge Management, 4(1), 7-15.

Russell S. \& Norvig P. (2003). Artificial Intelligence: A Modern Approach. Upper Saddle River, New Jersey: Prentice Hall.

Ryle, G. (1949). The Concept of mind, Chicago, IL: University of Chicago Press.
Sage, A. (1992). Systems Engineering. New York, NY: Wiley.
Sousa-Poza, A., Padilla, J.J., \& Bozkurt, I. (2008). Implications of a rationalist inductive approach in system of systems engineering research. In Proceedings of IEEE International Conference on System of Systems Engineering, Systems, Man, and Cybernetics. doi: 10.1109/SYSOSE.2008.4724186

Sterman, J. (1994). Learning in and about complex systems. System Dynamics Review. 10(2-3), 291-330.

Sternberg, R. J., Wagner, R., Williams, W., \& Horvath, J. (1995). Testing common sense. American Psychologist, 50(11), 912-927.

Tallman, I., Leik, R. K., Gray, L. N. \& Stafford, M. C. (1993). A theory of problem-solving behavior. Social Psychology Quarterly, 56(3), 157-177.

Tolk, A. \& Uhrmacher, A. (2009). Agents: Agenthood, agent architectures, and agent taxonomies. In L. Yilmaz and T. Ören (Eds.) Agent-Directed Simulation \& Systems Engineering (p. 87-126). New York, NY: John Wiley \& Sons

Understanding (2009). In Dictionary.com. Retrieved June 27, 2009, from http://dictionary.reference.com/browse/understanding.

Understanding (2009). In Merriam-Webster Online Dictionary. Retrieved June 27, from http://www.merriam-webster.com/dictionary/understanding.

Vennix, J. (1996). Group Model Building. New York, NY: Wiley.
Zagzebski, L. (2001). Recovering Understanding. In M. Steup (Ed.), Knowledge, Truth, and Duty: Essays on Epistemic Justification, Responsibility, and Virtue. New York, NY: Oxford University Press.

APPENDICES

Condition	WP-K	KW-P	KP-W												
1	28.852	29.056	29.204	33	30.848	30.056	30.5	65	6.712	188.5	204.996	97	192.864	195.54	82.688
2	301.544	302.976	297.028	34	297.564	298.876	299.768	66	288.64	285.192	285.8	-98	416	297.116	. 68
3	196.252	184.624	178.756	35	199.016	190.92	191.968	67	28.088	29.88	28.984	99	26.756	29.408	1.064
4	3516.572	3550.764	3367.22	36	3543.672	3559.104	3517.356	68	281.888	300.224	285.072	100	278.808	298.208	297.976
5	176.48	184.172	191.748	37	185.964	200.98	200.344	69	188.04	194.24	90.756	101	93.088	93.148	18
6	3344.716	3562.944	3473.976	38	3510.804	3553.336	3509.776	70	1839.372	1957.076	1912.424	102	1921.964	1976.892	937.42
7	1801.584	1875.696	1740.56	39	1849.656	1930.56	1748.732	71	174.5	199.336	186.052	103	192.632	196.592	848
8	33457.66	35915.01	33655.75	40	34888.4	35777.48	34597.27	72	3290.792	3611.58	3465.724	104	3413.776	3595	3501.272
9	191.336	185.46	192.248	41	191.02	184.824	192.784	73	1818.684	1924.596	1841.104	105	1878.528	2068.352	1813.736
10	292.708	295.256	286.592	42	293.624	293.9	298.44	74	1755.912	1927.952	1868.928	106	1864.248	2010.852	276
11	189.044	196.372	191.88	43	190.708	198.94	188.72	75	172.552	196.628	203.056	107	189.036	1.936	181.056
12	1894.416	1952.096	1839.34	44	1898.436	1931.604	1929.948	76	267.908	296.008	85.836	108	273.348	309.948	288.276
13	30.136	30.416	29.812	45	29.156	30.52	29.04	77	195.576	204.712	195.356	109	199.156	200.152	175.972
14	284.76	304.204	281.976	46	291.768	305.168	281.036	78	282.704	301.528	271.376	110	289.332	310.24	268.456
15	177.352	200.176	177.572	47	183.748	202.576	185.92	79	26.728	29.524	29.016	111	27.936	29.22	26.88
16	3460.188	3672.764	3325.512	48	3493.496	3685.88	3380.916	80	279.2	294.804	272.64	112	281.616	294	279.464
17	299.34	304.164	301.036	49	300.304	299.616	303.868	81	3526.156	3597.772	3533.632	113	3574.028	3603.424	3645.316
18	585.856	588.556	585.816	50	580.288	584.252	576.58	82	3683.556	3656.112	3730.504	114	3652.348	3666.532	3735.272
19	289.1	288.504	269.84	51	294.464	287.988	284.708	83	279.548	305.848	302.136	115	279.224	303.504	297.672
20	3637.616	3675.24	3458.332	52	3634.484	3694.308	3623.396	84	538.02	589.968	572.532	116	536.16	588.128	560.564
21	278.276	290.512	288.72	53	291.728	284.856	289.524	85	1915.368	1989.832	1920.544	117	1906.68	1974.288	1913
22	3485.072	3686.56	3650.796	54	3635.62	3677.968	3610.488	86	3608.936	3794.228	3711.708	118	3649.508	3834.628	3678.132
23	1768.324	1935.76	1800.432	55	1852.956	1846.692	1755.36	87	273.2	294.076	277.652	119	267.324	297.924	282.484
24	33764.98	35406.43	34073.04	56	35050.92	36028.42	34678.32	88	3404.844	3747.668	3588.92	120	3472.388	3706.58	3645.224
25	3633.764	3593.012	3555.532	57	3608.264	3573.508	3538.732	89	34899.75	36588.97	35439.27	121	34776.36	36471.1	35563.83
26	3683.556	3686.544	3636.036	58	3747.184	3724.308	3657.404	90	35351.11	36589.35	35207.36	122	34981.24	36500.23	35346.17
27	1925.316	1976.764	1949.316	59	1941.696	1978.84	1926.344	91	3427.32	3750.972	3587.68	123	3439.272	3756.688	3523.244
28	3707.032	3795.116	3608.124	60	3671.648	3789.292	3639.192	92	3555.084	3909.116	3723.396	124	3470.592	3909.844	3666.14
29	307.596	303.472	280.512	61	296.004	301.656	285.092	93	3640.988	3711.02	3458.228	125	3559.212	3714.028	3424.384
30	575.084	591.268	542.856	62	568.548	585.02	531.832	94	3765.204	3848.268	3548.912	126	3661.368	3814.092	3512.048
31	288.972	296.852	266.3	63	279.984	298.624	272.632	95	280.564	297.288	278.252	127	275.088	297.12	277.228
32	3569.804	3779.264	3420.696	64	3609.728	3792.14	3487.548	96	531.572	581.168	533.224	128	526.412	584.516	521.548

D. DATA ANALYSIS

Level 2

The challenge for analysis that level 2 presents is that it contains more initial conditions. Whereas level 1 has 8 conditions, level 2 has 20 as it can be seen in Table 21.

Condition\Factor	K_{α}	K_{β}	W_{α}	W_{β}	P_{a}	P_{β}	WO
3	H	L	L	L	L	L	l
5	L	L	H	L	L	L	L
9	L	L	L	H	L	L	L
11	H	L	L	H	L	L	L
15	H	L	H	H	L	L	L
35	H	L	L	L	L	L	H
37	L	L	H	L	L	L	H
41	L	L	L	H	L	L	H
43	H	L	L	H	L	L	H
47	H	L	H	H	L	L	H
65	L	H	L	L	L	L	L
69	L	H	H	L	L	L	L
71	H	H	H	L	L	L	L
75	H	H	L	H	L	L	L
77	L	H	H	H	L	L	L
97	L	H	L	L	L	L	H
101	L	H	H	L	L	L	H
103	H	H	H	L	L	L	H
107	H	H	L	H	L	L	H
109	L	H	H	H	L	L	H

Table 21. Level 2 Initial Conditions

What can immediately be observed is that, unlike level 1, in level 2, knowledge and worldview are not uniform in terms of settings (both knowledge and worldview have both settings, high and low). On the other hand, what makes this level similar to level 1 is that problem is still at low setting in all conditions.

A Levene test was conducted for this level to establish homogeneity of variances for comparison purposes. However, according to the test, they variances are not homogeneous. A Tamhane's T2 test was then conducted in order to compare the
different conditions. The results of this test are in Appendix G. A plot of means for effort is shown in Figure 39 and the result of the Levene test in Table 22.

Figure 39. Plot of Means Level 2 (Effort)

Test of Homogeneity of Variances
Effort

Levene Statistic	df1	df2	Sig.
6.599	19	4980	.000

Table 22. Levene Test for Level 2 (Effort)

From the Tamhane's T2 test it can be observed that all initial conditions are equivalent with a few exceptions, namely, conditions 109 from 65, and 75 and 15 from 65. These conditions are not equivalent given that they are placed at extreme levels from one another (see Figure 39). Taking conditions 3, 15, and 109 out (extreme lows)
and running the Tamhane's T2 test, the remaining conditions are statistically equivalent (results in Appendix H).

As was done for level one, given that there is not another significantly close level, they are considered within the same level for assessment. Although most conditions are statistically equivalent, it can be observed that there is more difference from condition to condition than at level 1 , which is consistent with the observation that the higher up in the level, the more variability in between means.

From the assessment of level 1 it was concluded that a high knowledge setting is equivalent to high worldview setting. In this level, comparing conditions 3 and 5 and conditions 9 and 65, it can be concluded that having one type of knowledge high is equivalent to having the corresponding worldview type at a high setting. This implies that worldview is as important as knowledge when it comes to understanding and it should not be assumed or ignored.

Comparing conditions 9 and 75 it can be concluded that more knowledge does not imply better understanding at this level either, given that these two conditions are statistically equivalent.

Finally, WO is of no statistical impact at this level either. This is concluded after comparing conditions with same knowledge and/or worldview settings with low and high wo levels, namely, conditions 9 and 41, 5 and 37, 11 and 43, 71 and 103, 75 and 107, 77 and 109, and 65 and 97.

Now, as in level 1, in most conditions time is not normally distributed. For simplification purposes, non-parametric tests for all conditions are obviated. Instead, assessment is based on the data which is shown in Figure 40 and non-parametric tests run on the need to basis. Comparing Table 21 and Figure 40 shows that the conditions that take the most time are those that have a high setting on one type of knowledge or worldview (conditions $3,5,9$, and 65) and WO is low. There is a mid level where the same setting takes place, but WO is high ($35,37,43$, and 97). Lastly, the conditions that take the least time are those that contain at least one type of knowledge and one type of worldview at high settings.

Figure 40. Plot of Means for Level 2 (Time)

Taking a closer look at conditions 71 and 103 that appear at the lower level and comparing them using a Mann-Whitney U Test (Table 23), it can be concluded that they are not statistically equivalent. This occurred regardless of their apparent proximity in term of means. Therefore, WO has an effect in terms of time at this level as well.

Test Statistics ${ }^{\text {a }}$

	VAR00001
Mann-Whitney U	20425.000
Wilcoxon W	51800.000
Z	-6.701
Asymp. Sig. (2-tailed)	.000

a. Grouping Variable: VAR00002

Table 23. Mann-Whitney U Test comparing Conditions 71 and 103 (Time)

It can be concluded that not only does WO have a positive effect, as it did in level 1, on understanding in terms of time but also a mix of knowledge and worldview setting.

Comparing condition 3 (level 2) with condition 1 (level 1), they are statistically equivalent. This means that more information (K_{α} equivalency) does not necessarily improve the time of understanding (Table 24) in KP-W.

Test Statistics ${ }^{\text {a }}$

	VAR00001
Mann-Whitney U	30334.000
Wilcoxon W	61709.000
Z	-.567
Asymp. Sig. (2-tailed)	.571

a. Grouping Variable: VAR 00002

Table 24. Mann-Whitney U test comparing Conditions 1 and 3 (Time)

Similar cases are found when comparing conditions 15 and 101, 47 and 101, and 71 and 43 in KW-P. KW-P, unlike KP-W and WP-K does not depend on WO. In these cases it can be observed that higher settings do not mean faster times. This is shown in Table 25. The asymptotic significance when comparing conditions 15 and $71<0.05$ what makes them not statistically equivalent. Further, Table 26 shows how condition 15, despite having higher settings, ranks higher (takes longer) in terms of time.
Test Statistics ${ }^{\mathbf{a}}$

	Time
Mann-Whitney U	25245.000
Wilcoxon W	56620.000
Z	-3.717
Asymp. Sig. (2-tailed)	.000

a. Grouping Variable: Type

Table 25. Mann-Whitney Test comparing Conditions 15 and 71 (Time)

Ranks

	Type	N	Mean Rank	Sum of Ranks
Time	1	250	274.52	68630.00
	2	250	226.48	56620.00
	Total	500		

Table 26. Mann-Whitney Test Rank Table comparing Conditions 15 and 71 (Time)

Now, the comparison of the three types of understanding in terms of effort and time for level 2 is going to be based on their overall behavior. As in level 1, this is due to some conditions that are not normally distributed, for effort, and most of the conditions for time. Figure 41 and Figure 42 show the comparison among the three types for effort and time respectively.

Figure 41. Comparison of Means for KP-W, KW-P, and WP-K at Level 2 (Effort)

As previously concluded for level 1, depending on the condition one type of understanding may perform better than the others in terms of effort and/or time. Unlike effort, the difference of means, in terms of time, is large. This says that even though conditions are equivalent in terms of effort, time needs to be considered if one were to obtain a way to make understanding more efficient. In terms of effort, there are 10 cases where KW-P apparently is worse than its counterparts. Of this 10 cases, 11,15 , $37,43,47,71,75,77,97,107$, and 109 , half have high WO and the other half have low WO. Of the remaining $10, K$ P-W and WP-K apparently perform better under different
settings, KP-W mostly when WO is high, WP-K when WO is low. It is said mostly, because there are some exceptions. This highlights what was said before; it is about the combination of settings of factors when looking for who presents better understanding out of the three types. For instance, for condition $65 \mathrm{KW}-\mathrm{P}$ takes (apparently) both less effort and less time to reach understanding. On the other hand, for condition 71, WP-K effort is less, while taking more time than its counterparts (apparently). On condition 109, KP-W takes less effort and more time than its counterparts.

Figure 42. Comparison of Means for KP-W, KW-P, and WP-K at Level 2 (Time)

Conducting a Tukey HSD test, it can be concluded that the three types of understanding are statistically the same in condition 65 and KP-W statistically different in condition 109 (Tables 27 and 28 respectively). Tukey HSD test was used because conditions are normally distributed and variance are homogeneous.

Effort		
Tukey HSD ${ }^{\text {a }}$		
		Subset for alpha $=.05$
Type	N	1
2	250	188.5000
3	250	196.7120
1	250	204.9960
Sig.		057

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size $=\mathbf{2 5 0 . 0 0 0}$.

Table 27. Tukey HSD Test Comparing Condition 65 (Effort)

Effort	
Tukey HSD	
Subset for alpha $=.05$ Type N 1 2 1.00 250 175.9720 3.00 250 199.1560 2.00 250 200.1520 Sig. 1.000 .990	

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size $=250.000$.

Table 28. Tukey HSD Test Comparing Condition 109 (Effort)

Evaluating condition 109 in terms of time, a Kruskal-Wallis test shows that the three types of understanding are not statistically equivalent even though, they appear closer in terms of means. It can be extrapolated that for higher differences, the probability of equivalency of the three types of understanding greatly diminishes (Table 29)

| Test Statistics ${ }^{\mathbf{a}, \mathbf{b}}$ |
| :--- |$|$

a. Kruskal Wallis Test
b. Grouping Variable: Type

Table 29. Kruskal-Wallis Test comparing Condition 109 (Time)

Finally, KW-P, although it may take more effort in most cases, is the overall best in terms of time than its couterparts.

This concludes the analysis of level 2.

Level 3

Level 3 presents a similar challenge for analysis than level 2. Unlike level 2, level 3 contains even more initial conditions. Table 30 shows the settings for level 3.

Condition\Factor	K_{α}	K_{3}	$\mathrm{Wa}_{\text {a }}$	W_{B}	P_{a}	P_{β}	WO
2	L	L	L	L	L	H	1
10	1	L	L	H	L	H	1
14	1	L	H	H	L	H	1
17	1	L	L	L	H	L	1
19	H	L	L	L	H	L	L
21	1	L	H	L	H	L	L
29	1	L	H	H	H	L	L
31	H	L	H	H	H	L	1
34	L	L	L	1	L	H	H
42	L	L	L	H	L	H	H
46	L	L	H	H	L	H	H
49	1	L	L	L	H	L	H
51	H	L	L	1	H	L	H
53	1	L	H	L	H	L	H
61	L	L	H	H	H	L	H
63	H	L	H	H	H	L	H
66	1	H	L	L	L	H	L
68	H	H	L	L	L	H	1
76	H	H	L	H	L	H	1
78	L	H	H	H	L	H	1
80	H	H	H	H	L	H	1
83	H	H	L	L	H	L	1
87	H	H	H	L	H	1	1
95	H	H	H	H	H	L	1
98	L	H	L	L	L	H	H
100	H	H	L	L	L	H	H
108	H	H	L	H	L	H	H
110	L	H	H	H	L	H	H
112	H	H	H	H	L	H	H
115	H	H	L	L	H	L	H
119	H	H	H	L	H	L	H
127	H	H	H	H	H	L	H

Table 30. Level 3 Initial Conditions

What can be immediately observed that makes these conditions different from level 1 and 2 , is that problem is now a mix of settings between types in all cases (high and low). Like level 1, in level 3 there are conditions with only one type of either knowledge or worldview at high level (condition 10 for instance), and like level 2, there are conditions with at least one knowledge and one worldview type at high level (condition 14 for instance). What it is of even more interest is that condition 2 reflects all settings at low level, but one type of problem at high $\left(P_{\beta}\right)$. Comparing condition 2 from level 3 and condition 1 from level 1 it can be said that this individual found this problem more difficult. The same can be said as one goes up in terms of levels. Notice that a problem type is either high while the other remains low and vice versa. There are no instances of both being at high setting.

Another behavior to notice is that the variation among means is more "erratic" than on the previous level. This can be seen when considering the Tamhane's T 2 test in Appendix 1 .

Whereas in level 2 there were only three conditions (3,15 , and 109) that were generating not comparable values, in level 3 there are at least eight conditions, namely $2,17,34,42,49,83,100$, and 115 . These conditions are the upper extreme values as it can be observed in Figure 43. Excluding these extreme conditions, the remaining conditions are statistically equivalent (except for the pairs 61 and 80 and 68 and 80). This equivalency makes them comparable. So, in terms of effort, as it was mentioned, it is about the combination of factor settings what makes effort higher or lower.

The Tamhane's T2 test without the upper values can be found in Appendix J.

Figure 43. Plot of Means for Level 3 (Effort)

Figure 44. Plot of Means for Level 3 (Time)

Figure 44 shows level 3 in terms of time. As can be seen, when moving towards high numbered conditions, understanding becomes more efficient. As in level 2 , it appears that high settings are conducive to faster understanding.

The three types of understanding, in terms of effort, are comparable. As in level 2, KW-P appears to be the one that takes more effort. In terms of time, as it occurs in previous levels, KW-P appears to perform better than its counterparts in most conditions (Figure 45 and Figure 46 respectively).

Figure 45. Comparison of Means for KP-W, KW-P, and WP-K at Level 3 (Effort)
As previously mentioned, a deeper analysis of this level repeats some of the previous findings.

Figure 46. Comparison of Means for KP-W, KW-P, and WP-K at Level 3 (Time)

This concludes the analysis of level 3.

Level 4

Level 4 is similar to level 1 in the number of initial conditions and in the settings for knowledge, worldview, and WO. Unlike level 1, level 4 has all problem settings at high. Table 31 shows the settings for level 4.

Condition\Factor	K_{α}	K_{β}	W_{α}	W_{β}	P_{α}	P_{β}	WO
18	L	L	L	L	H	H	L
30	L	L	H	H	H	H	L
50	L	L	L	L	H	H	H
62	L	L	H	H	H	H	H
84	H	H	L	L	H	H	L
96	H	H	H	H	H	H	L
116	H	H	L	L	H	H	H
128	H	H	H	H	H	H	H

Table 31. Level 4 Initial Conditions

Unlike previous levels, in level 4 about half of the conditions are not statistically equivalent. This can be observed in Figure 47 and it is confirmed by the Tamhane's T2 test in Table 32. This is despite the closeness of the averages, which range from 521 to 586. Conditions 62 and 84 suggest splitting the level in two, upper and lower values.

Figure 47. Plot of Means for Level 4 (Effort)

Multiple Comparisons
Dependent Variable: Effort
Tamhane

(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
18.00	30.00	42.96000*	4.38347	000	29.2241	56.6959
	50.00	9.23600	4.38575	639	-4.5070	22.9790
	62.00	53.98400*	4.34729	. 000	40.3611	67.6069
	84.00	13.28400	4.33006	062	-. 2851	26.8531
	96.00	52.59200*	4.16133	000	39.5490	65.6350
	116.00	25.25200*	4.45001	. 000	11.3081	39.1959
	128.00	64.26800*	4.18689	000	51.1455	77.3905
30.00	18.00	-42.96000*	4.38347	000	-56.6959	-29.2241
	50.00	-33.72400*	4.11447	000	-46.6160	-20.8320
	62.00	11.02400	4.07345	. 179	-1.7395	23.7875
	84.00	-29.67600*	4.05505	. 000	-42.3818	-16.9702
	96.00	9.63200	3.87436	312	-2.5087	21.7727
	116.00	-17.70800*	4.18290	001	-30.8145	-4.6015
	128.00	21.30800^{*}	3.90180	000	9.0816	33.5344
50.00	18.00	-9.23600	4.38575	639	-22.9790	4.5070
	30.00	33.72400^{*}	4.11447	. 000	20.8320	46.6160
	62.00	44.74800*	4.07590	. 000	31.9768	57.5192
	84.00	4.04800	4.05752	1.000	-8.6656	16.7616
	96.00	43.35600*	3.87694	. 000	31.2072	55.5048
	116.00	16.01600*	4.18529	. 004	2.9021	29.1299
	128.00	55.03200^{*}	3.90436	. 000	42.7975	67.2665
62.00	18.00	-53.98400*	4.34729	000	-67.6069	-40.3611
	30.00	-11.02400	4.07345	. 179	-23.7875	1.7395
	50.00	-44.74800*	4.07590	. 000	-57.5192	-31.9768
	84.00	-40.70000*	4.01591	. 000	-53.2832	-28.1168
	96.00	-1.39200	383338	1.000	-13.4040	10.6200
	116.00	-28.73200*	4.14497	. 000	-41.7197	-15.7443
	128.00	10.28400	3.86111	. 201	-1.8147	22.3827
84.00	18.00	-13.28400	4.33006	. 062	-26.8531	2851
	30.00	29.67600*	4.05505	. 000	16.9702	42.3818
	50.00	-4.04800	4.05752	1.000	-16.7616	8.6656
	62.00	40.70000*	4.01591	. 000	28.1168	53.2832
	96.00	39.30800*	3.81383	. 000	27.3574	51.2586
	116.00	11.96800	4.12689	. 104	-. 9632	24.8992
	128.00	50.98400*	3.84170	. 000	38.9463	63.0217
96.00	18.00	-52.59200*	4.16133	. 000	-65.6350	-39.5490
	30.00	-9.63200	3.87436	. 312	-21.7727	2.5087
	50.00	-43.35600*	3.87694	. 000	-55.5048	-31.2072
	62.00	1.39200	3.83338	1.000	-10.6200	13.4040
	84.00	-39.30800*	3.81383	. 000	-51.2586	-27.3574
	116.00	-27.34000*	3.94949	. 000	-39.7167	-14.9633
	128.00	11.67600**	3.65046	. 040	. 2379	23.1141
116.00	18.00	-25.25200*	4.45001	000	-39.1959	-11.3081
	30.00	17.70800*	4.18290	. 001	4.6015	30.8145
	50.00	-16.01600*	4.18529	. 004	-29.1299	-2.9021
	62.00	28.73200*	4.14497	. 000	15.7443	41.7197
	84.00	-11.96800	4.12689	. 104	-24.8992	. 9632
	96.00	27.34000^{*}	3.94949	. 000	14.9633	39.7167
	128.00	39.01600*	3.97641	. 000	26.5552	51.4768
128.00	18.00	-64.26800*	4.18689	. 000	-77.3905	-51.1455
	30.00	-21.30800*	3.90180	. 000	-33.5344	-9.0816
	50.00	-55.03200*	3.90436	. 000	-67.2665	-42.7975
	62.00	-10.28400	3.86111	. 201	-22.3827	1.8147
	84.00	-50.98400*	3.84170	000	-63.0217	-38.9463
	96.00	-11.67600*	3.65046	040	-23.1141	-. 2379
	116.00	-39.01600*	3.97641	000	-51.4768	-26.5552

*. The mean difference is significant at the .05 level.

Table 32. Tamhane's T2 Test for Level 4 (Effort)

To discriminate between upper and lower values on level 4, a comparison of means is conducted on conditions $18,50,84$, and 116 . However, the F-test shows that they are not statistically equivalent (Table 33).

ANOVA
Effort

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	82222.715	3	27407.572	12.092	.000
Within Groups	2257562	996	2266.629		
Total	2339785	999			

Table 33. F Test for Level 4 (Upper Values)

It can be concluded without further tests, that most conditions in level 4 are not equivalent. In this case, the questions left to ask are: what is the effect of WO or do high settings make a difference in terms of effort. From the Tamhane's T2 test, comparing conditions 18 and 50, it can be concluded that the two are statistically equivalent rendering WO, in this case, of no impact in terms of effort. Comparing conditions 62 and 128 it can be concluded that high settings do not play a role in terms of effort either in this particular case.

This level shows an insight previously mentioned:

- High problem setting does not imply a more "complex" problem. This is just level 4, in terms of effort, which means that there are other 3 levels that take more effort in terms of understanding. Despite low settings on knowledge, worldview, and WO, effort is low compared to levels 5,6 , and 7.

Figure 48 shows the plot of means for level 4 in terms of time. It can be observed that level 4 has an overall behavior similar to level 1 and level 3; an almost distinctive power graph that as knowledge, worldview, and WO goes higher in settings, the closer it gets to zero.

Figure 48. Plot of Means for Level 4 (Time)

A Tamhane's T2 test was conducted and it is shown in Table 34.

Multiple Comparisons						
Dependent Variable: Effort Tamhane						
(1) Condition	(J) Condition	Mean Difference (- -J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
18.00	30.00	46050.640*	549.22819	. 000	44499.6101	47601.6699
	50.00	37843.504*	553.49055	. 000	36280.8426	39406.1654
	84.00	47066.308*	547.67621	. 000	45519.5092	48613.1068
	128.00	50611.360*	545.60645	. 000	49070.2005	52152.5195
30.00	18.00	-46050.640*	549.22819	. 000	-47601.6699	-44499.6101
	50.00	-8207.1360*	112.44748	. 000	-8523.5440	-7890.7280
	84.00	1015.66800*	79.00555	. 000	793.4231	1237.9129
	128.00	4560.72000*	63.07967	. 000	4382.5460	4738.8940
50.00	18.00	-37843.504*	553.49055	. 000	-39406.1654	-36280.8426
	30.00	8207.13600*	112.44748	. 000	7890.7280	8523.5440
	84.00	9222.80400*	104.60431	. 000	8928.1973	9517.4107
	128.00	12767.856*	93.16239	. 000	12504.7064	13031.0056
84.00	18.00	-47066.308*	547.67621	. 000	-48613.1068	-45519.5092
	30.00	-1015.6680*	79.00555	. 000	-1237.9129	-793.4231
	50.00	-9222.8040*	104.60431	. 000	-9517.4107	-8928.1973
	128.00	3545.05200*	47.71447	. 000	3410.2815	3679.8225
128.00	18.00	-50611.360*	545.60645	. 000	-52152.5195	-49070.2005
	30.00	-4560.7200*	63.07967	. 000	-4738.8940	-4382.5460
	50.00	-12767.856*	93.16239	. 000	-13031.0056	-12504.7064
	84.00	-3545.0520*	47.71447	. 000	-3679.8225	-3410.2815

*. The mean difference is significant at the .05 level.
Table 34. Tamhane's T2 Test for Normally Distributed Conditions in Level 4 (Time)

Table 34 shows that these five conditions are not statistically equivalent. All that can be said is that they are different and that the higher the value, the more time it takes to reach understanding.

Comparing the three types of understanding in terms of effort and time (Figure 49 and Figure 50 respectively), it can be observed that the previous insights of one type may be better than the other whether in other conditions are equivalent still stand.

Figure 49. Comparison of Means of KP-W, KW-P, and WP-K at Level 4 (Effort)

Figure 50. Comparison of Means for KP-W, KW-P, and WP-K at Level 4 (Time)

This concludes the analysis of level 4.

Level 5

Table 35 shows level 5 initial conditions.

Condition\Factor	K_{α}	K_{β}	W_{α}	$W^{\text {S }}$	Pa_{a}	$\mathrm{P}_{\text {b }}$	WO
7	H	L	H	L	L	L	L
12	H	L	L	H	L	H	L
23	H	L	H	L	H	L	1
27	H	L	L	H	H	L	1
39	H	L	H	L	L	L	H
44	H	L	L	H	L	H	H
55	H	L	H	L	H	L	H
59	H	L	L	H	H	L	H
70	L	H	H	L	L	H	4
73	1	H	L	H	L	L	1
74	1	H	L	H	L	H	1
85	1	H	H	1	H	L	1
102	1	H	H	L	L	H	H
105	1	H	L	H	L	L	H
106	1	H	L	H	L	H	H
117	1	H	H	L	H	L	H

Table 35. Level 5 Initial Conditions

Level 5 distinguishing characteristics are:

- There is one high knowledge setting per condition, not both. All previous levels had conditions where knowledge had both types at high settings.
- Problem settings are all low or a mix of high and low. This is truly a combination of problem setting from previous levels.
- Worldview settings are low or a mix of high and low. It is the same behavior than knowledge.
- More importantly, when problem settings are at low, knowledge and worldview settings both coincide at high or low setting on either type (conditions 7, 39, 73, and 105).
- When one problem setting is high, two cases occur: first where one corresponding knowledge type and one corresponding worldview type are high (conditions 23, 55, 74, and 106). The other, where one corresponding knowledge or worldview is paired up with a non corresponding knowledge or worldview type (conditions 12, 27, 44, 59, 70, 85, 102, and 117).

Appendix K shows that Tamhane's T2 test for level 5, excluding conditions 55 and 105 because they are not normally distributed. However, conditions 55 and 105 are considered within the group for overall assessment.

From Appendix K two forms of grouping are possible; however, one provides a particular separation on two groups. One group contains conditions 27, 44, 59, 70, 85, 102 , and 117 and the other conditions $7,12,23,39,73,74$, and 106. These groupings separate those conditions with high problem setting with the paired up corresponding knowledge or worldview type with non corresponding knowledge or worldview type as one group (with the exception of condition 12). The second group is formed by those conditions with coinciding knowledge and worldview type regardless of problem setting. Condition 12 does not belong to the first group because it takes less effort. This is due to the availability of proper worldview when the KP match first occurs despite the high likelihood of initial mismatches due to high numbers of K_{α} and P_{β}. This is counterintuitive, especially when compared with condition 27 . Condition 27 has, apparently, the perfect initial setting to deal with the problem (K_{α} at high for P_{α} at high). However, do consider that W_{β} is at high level generating many mismatches which amounts to high effort. On condition 12, it happens the other way around; there are few initial mismatches due to the low K_{α}.

Figure 51 shows this level. The upper values correspond to the first group while the lower values to the second.

Figure 51. Plot of Means for Level 5 (Effort)

The previously mentioned characteristics mean:

- For group one, a problem with one high setting that is matched with non corresponding knowledge or worldview type at high settings, will correspond to a lower degree of effort (compared to group 2). Also notice that at this level it is much more evident the fact that higher setting levels does not imply less effort. Comparing conditions 27 and 17 (from level 3), for instance, the former takes more effort regardless of higher knowledge and worldview settings with the same problem and WO setting. This is evidence that complexity, viewed from an understanding perspective, is about the mismatch of types more than the high settings of problem and/or of WO. On the following levels this mismatch is taken gradually to the extreme, making for extreme efforts to understand. Furthermore, there are conditions that are at low setting,
(condition 73 for instance), take more effort than counterparts with higher problem setting and similar knowledge and worldview combinations (condition 84). This implies that complexity does not necessarily depend on the higher problem setting.
- Group two, formed by those conditions with coinciding knowledge and worldview type regardless of problem setting, take more effort due to the matching of high knowledge and worldview setting when problem is at low setting, and the matching of high knowledge and worldview setting with one of problem setting at high because it corresponds to the type at high setting of knowledge and worldview.
- From both groups, intuitive possible outcomes may not be true after all. Each condition, within a type of understanding must be evaluated.
- Finally, when considering better understanding, it is not only about taking into account what conditions to seek but also what conditions to avoid. The higher the level, the more aware an individual needs to be in order to avoid higher effort.

Figure 52 shows the means in terms of time. The behavior of time at this level is similar to that of level 2 , apparently erratic. It is not like the other levels (besides 2) where, as it was mentioned, the higher the knowledge and worldview setting and WO, the closer to zero in terms of time. This is because knowledge and worldview exist at similar settings. WO helps in the variation of the means. The inherent purpose of this analysis, as before, was to have an idea on the effect of WO. However, all cases where WO is at high perform better than at low setting. Take for instance conditions 12 and 44 take look apparently in close proximity to one another. Conducting a Mann-Whitney Test, it was found that the difference on WO matters (see Table 36).

Figure 52. Plot of Means for Level 5 (Time)

Test Statistics ${ }^{\text {a }}$

	Time
Mann-Whitney U	5244.000
Wilcoxon W	36619.000
Z	-16.099
Asymp. Sig. (2-tailed)	.000

a. Grouping Variable: Condition

Table 36. Mann-Whitney Test comparing Conditions 12 and 44 at Level 5 (Time)

To have an idea of the effect of time, it is better to use KW-P given that it does not depend on WO. Figure 53 shows the plot of means for level 5 in terms of time. As it can be observed, unlike Figure 52, Figure 53 shows a clear difference between the two groups within level 5 previously identified.

Figure 53. Plot of Means for KW-P at Level 5 (Time)

Table 37 shows the results of the Kruskal-Wallis Test comparing the conditions within group 1 (including condition 12). The test shows that the conditions within group 1 at level 5 are not statistically different.

Test Statisticsa,b	
Time Chi-Square 9.798 df 7 Asymp. Sig. .200	
a. Kruskal Wallis Test	
b. Grouping Variable: Condition	

Table 37. Kruskal-Wallis Test for Group 1 at Level 5 (Time)

This is an interesting development, especially when compared to effort. For instance, Table 37 says that condition 12 and condition 27 are equivalent in terms of time, but they could not be more different in terms of effort (see Appendix K).

This is an interesting change of events in the sense that up to this point, conditions for effort usually behave similarly while time is not. Here, both provide equal elements for comparison and insight generation.

Table 38 shows the results of the Kruskal-Wallis Test comparing the conditions within group 2. As can be observed, they are not statistically different in terms of time.
Test Statistics ${ }^{\mathbf{a}, \mathrm{b}}$

	Time
Chi-Square	10.834
df	7
Asymp. Sig.	.146

a. Kruskal Wallis Test
b. Grouping Variable: Condition

Table 38. Kruskal-Wallis Test for Group 2 at Level 5 (Time)

Unlike the analysis of time in previous levels that focused on higher settings as compared to lower settings, the focus here is on the combination of settings. For instance, comparing conditions 23 and 27; problem has the same setting, what changes is the high number of the type of worldview. Also, comparing the same conditions in terms of effort and time, it is shown that what may be beneficial in terms of effort it is not in terms of time and vice versa.

Figure 54 shows the means comparison of the three types of understanding in terms of effort.

Figure 54. Comparison of Means for KP-W, KW-P, and WP-K at Level 5 (Effort)

As in previous levels, if one is to consider which is the best type, one must look into each individual case to seek the best condition or avoid the worse ones within the level.

Figure 55 shows the means comparison in terms of time. As in previous levels, KW-P seems to perform better than its counterparts in some conditions.

Figure 55. Comparison of Means for KP-W, KW-P, and WP-K at Level 5 (Time)

This concludes the analysis of level 5 .

Level 6

Level 6 is perhaps the most challenging level for analysis because of the large number of initial conditions included (36). Table 39 shows the settings for level 6.

Condition\Factor	K_{a}	K_{β}	$\mathrm{Wa}_{\text {a }}$	W_{β}	Pa_{a}	P_{β}	WO
4	H	L	L	L	L	H	L
6	L	L	H	L	L	H	L
16	H	L	H	H	L	H	L
20	H	L	L	L	H	H	L
22	L	L	H	L	H	H	L
25	L	L	L	H	H	L	L
26	L	L	L	H	H	H	L
28	H	L	L	H	H	H	1
32	H	1	H	H	H	H	1
36	H	1	L	L	L	H	H
38	L	L	H	L	L	H	H
48	H	L	H	H	L	H	H
52	H	L	L	L	H	H	H
54	L	L	H	L	H	H	H
57	L	L	L	H	H	L	H
58	L	L	L	H	H	H	H
60	H	1	L	H	H	H	H
64	H	L	H	H	H	H	H
72	H	H	H	L	L	H	L
81	L	H	L	L	H	L	1
82	L	H	L	L	H	H	1
86	L	H	H	L	H	H	1
88	H	H	H	L	H	H	L
91	H	H	L	H	H	L	L
92	H	H	L	H	H	H	L
93	L	H	H	H	H	L	L
94	L	H	H	H	H	H	L
104	H	H	H	\underline{L}	L	H	H
113	L	H	L	L	H	L	H
114	L	H	L	L	H	H	H
118	L	H	H	L	H	H	H
120	H	H	H	L	H	H	H
123	H	H	L	H	H	L	H
124	H	H	L	H	H	H	H
125	L	H	H	H	H	L	H
126	L	H	H	H	H	H	H

Table 39. Level 6 Initial Conditions

As was the case in level 5 , level 6 weighs more heavily the combination than the high settings of knowledge and worldview to generate more effort. At this point, an individual falls into the case of knowing "too much" of the wrong type of problem increasing the likelihood of using this type of knowledge and/or a type of worldview inappropriately. This situation, as can be seen, is more detrimental than having a problem at high setting or what it could be considered a "more complex" problem. These cases are those where an individual attempts to use knowledge about structure on a problem about behavior, or use knowledge about behavior on a problem about behavior with a worldview about structure.

Appendix L contains a Tamhane's T2 test on level 6 excluding conditions 4 and 6 because they are not normally distributed. However, conditions 4 and 6 are considered within this level for assessment purposes.

Tamhane's T2 test shows there is overlapping of conditions creating the possibility of many categorizations within the level. However, if categorizations were to be established there are conditions that would no abide by one category only. As can be seen in the test, one condition may belong to at least two different groupings. This impedes the generalization from the categorization. For this reason, there is no suggested grouping. This is paradoxical; suggested grouping may miss important combinations, and without grouping there is no way of establishing generalizations within the level. In addition, there are many possible explanations for the differentiation of categories. For instance, condition 20 more likely belongs to this level because of the opposite types of K and P. Condition 25 , on the other hand, more likely belongs to this level because of the low K. All that can be said about the conditions of this level is that if they are equivalent different explanations may not make them comparable.

Figure 56 shows how a condition may be belong to different sub-groups within the level. Figure 56 also highlights the seemingly "erratic" behavior previously mentioned as the means vary greatly in values. This variation is what creates the different possible groupings.

This is an important finding; the fact that at this level no generalization within a level is possible further reassures the need to consider each condition separately.

What can be generalized from all groups is that the combination of extreme conditions may prompt an individual to see the problem situation as more complex due the steep effort required to understand.

Figure 56. Plot of Means for Level 6 (Effort)

Focusing on time, the same behavior presented at level 5 can be observed: two clear groupings based on efficiency (Figure 57). As was the case for level 5 , in this level better time does not mean less effort. Consider condition 4; in terms of time present a high value whereas in terms of effort is the second lowest value. Condition 16, on the other hand, is low in both time and effort (the lowest value). On the same token, condition 114 is high in both time and effort. In other words, each condition must be evaluated for time and effort and seek the one with better result while avoiding the ones with higher penalties keeping in mind possible trade offs.

Figure 57. Plot of Means for KW-P at Level 6 (Time)

Figure 58 and Figure 59 show the comparison of means for effort and time respectively. As previously mentioned, whereas some conditions may be equivalent, some may not. Each condition needs to be evaluated individually if one needs to decide which type of understanding takes less effort

Figure 58. Comparison of Means for KP-W, KW-P, and WP-K at Level 6 (Effort)

Figure 59. Comparison of Means for KP-W, KW-P, and WP-K at Level 6 (Time)

Although in terms of output there is no clear generalization, in terms of input there is. There are five groupings based on input:

- Group 1: One high setting of knowledge or worldview and one type of problem at high setting (1,1).
- Group 2: One high setting of knowledge or worldview and problem at high setting (1, 2).
- Group 3: Two high setting of either knowledge, or worldview, or one and one and problem at high $(2,2)$.
- Group 4: Three high setting of knowledge and worldview (two and one or one and two) and one type of problem at high setting (3,1).
- Group 5: Three high setting of knowledge and worldview (two and one or one and two) and one problem at high setting (3,2).

These groupings, however, do not correspond to similar outputs. In other words, an individual within group 2 can be equivalent to an individual within group 5 such as the case of conditions 82 and 92 respectively (see appendix L).

This concludes the analysis of level 6.

Level 7

The difference between level 7 and the rest is significant. This means that the combinations of this level present certainly the most difficult challenge an individual may have when dealing with a problem situation. Table 40 shows this level's initial conditions.

Condition\Factor	K_{α}	K_{β}	W_{α}	W_{β}	P_{a}	P_{β}	WO
8	H	L	H	L	L	H	L
24	H	L	H	L	H	H	L
40	H	L	H	L	L	H	H
56	H	L	H	L	H	H	H
89	L	H	L	H	H	L	L
90	L	H	L	H	H	H	L
121	L	H	L	H	H	L	H
122	L	H	L	H	H	H	H

Table 40. Level 7 Initial Conditions

As level 1, this is a very straightforward case: the existence of one problem type at high setting (alpha or beta) and the opposite type of knowledge at high setting with the high setting of the corresponding worldview to the knowledge type. What this combination does is that when a mismatch of knowledge and problem occurs it gets exacerbated by the high setting of the worldview.

This shows two groupings based on input: 2, 1 (one type of knowledge and one type of worldview at high setting with one type of problem at high setting) and 2,2 (one type of knowledge and one type of worldview at high setting with problem at high setting). Group 2,2 from level 7 and 6 are quite different. The one corresponding to level 6 is one type of knowledge at high and the opposite worldview at high as well with problem at high. The one corresponding to level 7 is one type of knowledge at high and the corresponding type of worldview at high with problem at high. In other words, for level 7, corresponding knowledge and worldview types do not work on the problem at hand. For level 6, there are not corresponding knowledge and worldview types. This allows balancing the problem out when at high setting.

Table 41 shows that the variances are homogeneous. Tukey HSD was then conducted to establish which conditions where statistically equivalent. However, like level 6, level 7 does not present a clear grouping based on the output (Table 42). Instead, four variable groupings are shown with no indication of how one is similar to the other. Two groups contain five variables whereas the other two contain three. From level 1 to 5 , it was found that these groupings worked in even numbers which made easier generalizing from the output. This is not the case for level 6 and 7. In addition,
notice conditions 8,24 , and 40 . They are not statistically equivalent. However, WO is the same for 8 and 24, but not for 40 . Even though WO is the same for 8 and 24 , both have different problem setting. All that can be said is that the behavior seems erratic and that each condition needs to be evaluated independently to see if equivalence with other condition can be established.

Test of Homogeneity of Variances
Effort

Levene Statistic	df1	df2	Sig.
.963		7	1992

Table 41. Levene Test for Level 7 (Effort)

Effort

Condition	N	Subset for alpha $=.05$			
		1	2	3	4
8.00	250	33655.75			
24.00	250	34073.04	34073.04		
40.00	250	34597.27	34597.27	34597.27	
56.00	250		34678.32	34678.32	34678.32
90.00	250			35207.36	35207.36
122.00	250			35346.17	35346.17
89.00	250			35439.27	35439.27
121.00	250				35563.83
Sig.		. 062	. 550	. 141	. 100

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size $=250.000$.

Table 42. Tukey HSD Comparing Conditions for Level 7

Figure 60 shows the plot of means for this level.

Figure 60. Plot of Means for Level 7 (Effort)

Figure 61 shows the plot of means in terms of time. Unlike effort, and like level 6 , time in level 7 provides a distinguishable pattern. However, it is not a new pattern; it shows that WO has an effect on understanding. As in all cases, it shows that a high WO takes less time that a low WO.

Figure 61. Plot of Means for Level 7 (Time)

As before, to have an idea about the behavior of understanding through time, it is better to look at KW-P given that it does not depend on WO. Figure 62 shows the plot of means for KW-P.

Figure 62. Plot of Means for KW-P at Level 7 (Time)

Figure 62 shows what seems like uneven groupings: conditions 24,56 , and 89 with low values and conditions $8,40,90,121$, and 122 with high values. However, conducting a Kruskal-Wallis test, it can be concluded that they all are statistically equivalent (Table 43).

Test Statistics ${ }^{\mathbf{a}, \mathbf{b}}$	
	Time
Chi-Square	3.377
df	7
Asymp. Sig.	.848

a. Kruskal Wallis Test
b. Grouping Variable: Condition

Table 43. Kruskal-Wallis Test for Level 7 (Time)

Figure 63 shows the comparison of means for effort. KW-P seems to perform worse than its counterparts. As previously mentioned, whereas some conditions may be
equivalent, some may not. Each condition needs to be evaluated individually if one needs to decide which type of understanding is better than another.

Figure 63. Comparison of Means for KP-W, KW-P, and WP-K at Level 7 (Effort)

Taking condition 8 as an example, it can be seen how KP-W (Type 1) and WP-K (Type 3) are statistically equivalent. In this case, as is the case of all this level, KW-P (Type 2) performs worse than its counterparts (see Table 44).

Effort			
Tukey B^{a}			
Subset for alpha $=.05$ Type N 1 2 3.00 250 33457.66 1.00 250 33655.75 2.00 250 35915.01			

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size $=250.000$.

Table 44. Tukey Test comparing Condition 8 (Effort)

Figure 64 shows the comparison of means for time. As before, KW-P seems to perform better than its counterparts in most conditions. Evaluating condition 56, for instance, it can be concluded that the three types of understanding are statistically different (Table 45). However, looking at the rank table (Table 46), it can be observed that KP-W and WP-K's ranks are close. Conducting a Mann-Whitney U Test for KP-W and WP-K it can be concluded that the two are not statistically different (Table 47).

Figure 64. Comparison of Means for KP-W, KW-P, and WP-K at Level 7 (Time)

Test Statistics ${ }^{\text {a,b }}$

	Effort
Chi-Square	225.963
df	2
Asymp. Sig.	.000

a. Kruskal Wallis Test
b. Grouping Variable: Type

Table 45. Kruskal-Wallis Test comparing Condition 56 (Time)

Ranks			
	Type	\mathbf{N}	Mean Rank
Effort	1	250	469.50
	2	250	207.73
	3	250	449.27
	Total	750	

Table 46. Kruskal-Wallis's Rank Table comparing Condition 56 (Time)

Test Statistics ${ }^{\text {a }}$

	Effort
Mann-Whitney U	29595.000
Wilcoxon W	60970.000
Z	-1.025
Asymp. Sig. (2-tailed)	.306

a. Grouping Variable: Type

Table 47. Mann-Whitney Test comparing KP-W and KW-P for Condition 56 (Time)

As previously mentioned, one must evaluate what is the most desired output, depending on the input, if one is to simulate what better understanding is like.

This concludes the analysis of level 7 .

WO Threshold

WO has been of great use in considering the dynamism of problem conditions: low level being more dynamic than high level given that the chance to understand it is shorter. It has been clear, in terms of time, the impact that WO has on the output. What is not clear is when WO does not play a role. Initially it was thought that this was a case of a threshold. However, it is more a case of converging towards a value. Figure 65 shows the means for WO, running from condition 15 (5 time units) and passing by condition 47 (95 time units). The means are based on 30 runs per condition, increasing WO by one time unit until WO equals 160 time units (corresponding data is in Appendix M).

Figure 65. WO for Condition 15, from 5 to 160 Time Units

Figure 65 is not conclusive regarding the effect of WO as it grows higher. However, it can be speculated that:

- The convergence point is around 1200-1300 time units.
- There is a lot of variance between means. More runs per conditions may be needed to alleviate the effect of outliers.

A deeper analysis of WO is outside of the scope of this work, and it is considered for future work.

E. NORMALITY TEST (TIME)

Condition WP-K KW-P KP-W Condition WP-K KW-P KP-W Condition WP-KKW-P KP-W Condition WP-K KW-P KP-W

1	0.08	0.02	0.01	33.	0.06	0.01	0	65	0.02	0.07	0.06	97	0.01	0	0.08
2	0.04	0.33 '	0.14	34	0.19	0.29	0.6	66	0.02	0.05	0.24	98	0.04	0.02	0
3	0.02	0.15	0.01	35	0	0.01	0	67	0.06	0	0.01	99	0.04	0.2	0
4	0.03	0	0.06	36	0.04	0.01	0.2	68	0.05	0.07	0.01	100	0.14	0.02	0.01
5	0.03	0.03	0	37	0.01	0.09	0	69	0.26	0.04	0.01	101	0.13	0.03	0.11
6	0.05	0.03	0.01	38,	0.06	0.01	0.1	70	0.02	0.04	0.33	102	0.01	0.02	0
7	0	0.03	0.03	39	0.06	0	0	71	0.01	0.07	0.02	103	0.01	0	0.04
8	0.07	0	0.02	40	0.08	0	0	72	0.08	0.01	0.06	104	0.03	0.02	0.02
9	0.03	0	0.01	41	0.02	0.01	0	73	0.14	0.06	0.04	105	0	0.07	0.07
10	0.03	0.02	0.01	42	0.09	0	0	74	0.02	0	0.04	106	0.05	0.01	0
11	0	0.01	0.13	43	0.29	0.08	0	75	0.03	0	0.07	107	0	0.01	0.02
12	0	0.01	0.06	44	0.01	0	0.1	76	0.02	0	0	108	0.01	0.01	0.06
13	0.02	0.03	0.02	45	0	0.02	0.1	77	0.03	0.01	0	109	0	0.02	0.14
14	0.14	0.06	0.03	46	0.03	0.24	0.2	78	0.01	0.02	0.01	110	0.01	0.07	0.06
15	0	0	0	47	0.01	0.07	0	79	0.01	0.06	0.02	111	0.01	0.09	0.01
16	0.04	0.1	0.06	48	0.14	0.09	0	80	0.08	0	0.03	112	0.02	0.03	0.01
17	0.08	0.54	0.28	49	0.07	0.86	0	81	0.03	0.03	0.01	113	0.04	0	0.01
18	0.03	0.91	0.07	50.	0.08	0.7	0.6	82	0.03	0.09	0.02	114	0.07	0.11	0.01
19	0.01	0	0.03	51	0.02	0.01	0	83	0.29	0.2	0.25	115	0.31	0.03	0.19
20	0.16	0.03	0.13	52	0.11	0.14	0	84	0.09	0.09	0.06	116	0.01	0.05	0
21	0.01	0.01	0.05	53	0.03	0	0.1	85	0.02	0.01	0.29	117	0.16	0.03	0.17
22	0.07	0.21	0.09	54	0.38	0.44	0	86	0.17	0.14	0.04	118	0.22	0.07	0.54
23	0.01	0	0.13	55	0.02	0.01	0	87	0.02	0.04	0.07	119	0.02	0.04	0.01
24	0.26	0.08	0.11	56	0.29	0.07	0	88	0	0.09	0.02	120	0.19	0.26	0
25	0.02	0.02	0.14	57.	0.1	0.02	0	89	0.01	0.39 :	0.15	121	0.01	0.27.	0.02
26	0.04	0.07	0.02	58	0.01	0.24	0	90	0.25	0.06	0.02	122.	0.1	0.02	0
27	0.02	0.03	0.01	59	0.05	0	0.3	91	0.01	0.06	0.14	123	0.03	0.06	0.06
28	0.01	0.23	0.06	60	0.01	0.06	0	92	0.05	0	0.06	124	0.	0.09	0.18
29	0.21	0.03	0	61	0.03	0.11	0.1	93.	0.05	0.04	0.12	125'	0.09	0	0.05
30	0.05	0.02	0.13 .	62	0.02	0.04	0	94	0.04	0.38	0.01	126	0.09	0.06	0.19
31	0.02	0.05	0.01	63	0.02	0.02	0.1	95.	0.08	0.32	0	127	0.01	0.05	0.07
32	0.14	0.23	0.02	64	0.01	0.01	0	96	0	0.07	0.03	128	0.05	0.01	0.21

F. LEVENE AND F TESTS FOR CONDITIONS 1, 13, AND 99 RESPECTIVELY

Test of Homogeneity of Variances

Effort

Levene Statistic	df1	df2	Sig.
2.930	2	747	.054

ANOVA
Effort

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	15.619	2	7.809	.065	.937
Within Groups	89489.336	747	119.798		
Total	89504.955	749			

Test of Homogeneity of Variances
Effort

Levene Statistic	df1	df2	Sig.
1.594	2	747	.204

ANOVA
Effort

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	45.683	2	22.841	.196	.822
Within Groups	87176.276	747	116.702		
Total	87221.959	749			

Test of Homogeneity of Variances
Effort

Levene Statistic	df1	df2	Sig.
.218	2	747	.804

ANOVA
Effort

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2361.192	2	1180.596	10.388	.000
Within Groups	84893.476	747	113.646		
Total	87254.668	749			

G. TAMHANE'S T2 TEST FOR LEVEL 2 (EFFORT)

			Mean Differerce			15\%\% Confid	nce interval
	(1) Canditan	(J) Condition	($1-3$)	Std. Error	Sig.	Lower 3ound	Upper Bound
TaThane	3.00	5.00	-12.95200	7.70770	1.900	41.2733	15.2883
		2.00	-13.46200	7.20454	1.560	-38.2242	12.8402
		11.00	-13.12400	6.34727	1.060	-33.4259	10.1778
		35.00	1.18400	$7.274{ }^{3}$	1.060	-25.5001	27.8741
		35.00	-13.21200	7.48442	$1 . \mathrm{JCO}$	-40.58a	14.1745
		37.90	-21.58000	7.75809	.655	-50.0473	8.8713
		41.00	-14.32600	7.55139	1.0co	41.7342	13.8792
		43.00	-9.20430	5.26E1. ${ }^{\text {c }}$	1.560	-32.eert	13.6337
		47.00	-7.14400	7.09361	1.960	-33.1855	18.8815
		35.00	-26.24000	7.32495	077	-53.3712	. 8912
		33.00	- 2.00000	0.43748	1.0co	-35.31:1	11.2111
		71.00	-7.26800	7.2826	1.060	-34.0152	15.4239
		75.00	-24.36000	7.50525	217	-51.8289	3.2398
		77.00	-66.80000	7.49140	. 885	44.0257	10.8357
		97.00	-3.23200	7.21629	1.000	-30.4124	22.5544
		101.00	$\bigcirc 7.42400$	0.43545	.7e4	-41.2642	e.4i92
		303.00	-i. $0 ¢ 800$	7.58774	1.000	-37.3EE4	17.8744
		907.00	-2.3C000	7.35188	1.050	-29.0983	24.4098
		109.00	2.78400	7.04744	1.050	-23.0723	28.6403
	5.00	3.05	12.28200	7.70775	1.006	-15.2893	41.2733
		9.00	-.50000	7. E 23 4 7	1.060	-23.7282	27.7232
		11.00	- 12200	в.б8ея	1.000	-25.4e51	25.2011
		15.00	74.17600	7.75803	1.000	-14.2939	42.4450
		35.00	-22000	7.93707	1.0C0	-29.3405	28.6005
		37.00	-8.56600	6. 211105	1.000	-39.7243	21.6323
		41.09	-1.02500	2.01091	1.000	-35.4533	$28.3 \overline{4} 3$
		43.01	3.02630	6.52144	1.060	-22.0325	28.6 ¢38
		47.00	5.52500	7.55839	1.000	-22.0212	33.6772
		65.00	-13.24300	7.67177	1.060	42.1204	15.8334
		69.00	28200	7.02854	1.050	-24 950̄8	2 e 7928
		71.00	5.88600	7.78852	1.060	-22.8007	34.1927
		75.00	- 1.36800	7.97543	1.060	40.5092	17.8532
		77.00	-3.5CE00	7.98245	1.050	-32.8214	25.8054
		97.08	8.00000	7.75 e9a	$1 . \mathrm{cco}$	-12. 2167	37.3357
		[01.0u	4.43200	7.03351	1.060	-30.2693	21.3953
		20300	2.36000	-0.03431	1.050	-26.5769	32.3768
		307.00	10.6¢200	7.78420	1.0co	-17.969	36.2530
		-29.00	15.77600	7.54 e 25	289	.i1.2153	43.4678

			Mean Difference			25\% Sorid	ase interval
	1) Canditan	(t) Cordition	(1-ل)	Sta Emor	Sig.	Lower Bound	Upper Bound
Tamant	9.00	3.03	13.48200	7.20454	1.000	-328402	38.5242
		5.0 J	50000	7.68317	1.000	-27.7252	28.7232
		11.00	36830	6.32564	1.000	-22.8e35	23.2045
		15.90	14.8:800	7.25943	1.000	-11.8577	41.3027
		35.00	28030	7.44642	1.000	-27.0570	27.0916
		37.00	-8.08800	7.74163	1.000	-35.5028	20.3708
		41.00	- 590000	$7.53{ }^{\text {2 }} 55$	1.000	-23.183]	27.1180
		43.00	3.52800	5.24730	1.000	-18.4097	2 C 4657
		47.00	8.32890	7.07782	1.000	-12.5395	32.2955
		65.00	-12.74600	7.37901	1.000	-32.8239	14.3278
		52.00	1.48200	6.47079	1.000	-22.2554	25.2384
		71.00	0.18030	7.26754	1.000	-25.4e75	32.8505
		75.00	-10.80690	7.42 C 33	1.000	. 39.2800	16.8740
		77.00	-3. 10600	7.47843	1.000	-33.5293	24.3230
		67.00	6.58008	7.20378	1.000	-16.9805	35.8585
		101.00	-3.23290	6.47820	1.000	-27.7038	16.8448
		903.00	3.48000	7.55294	1.000	-24.3122	31.1122
		907.00	11.1620]	7.25 e3	1.000	-15.5404	37.524 ¢
		198.10	78.27530	7.03155	882	-2.52io	42.0738
	71.20	3.01	13.12400	6.34728	1.000	-10.1776	38.4258
		5.03	. 13220	6.68293	1.000	-25.2011	26.4651
		9.05	-3e80	6.32864	1.000	-23.6C45	22.8885
		:5.30	14.30000	8.40853	. 883	-2.2235	37.8385
		35.08	-.08630	6.52394	1.060	-24.4139	24.2358
		37.00	-8.40400	6.95C94	1.050	-33.3868	17.0689
		41.00	-.86400	6.72178	1.000	-25-5ec5	23.7615
		43.00	3.12030	5.23\%09	1.050	-18.0467	32.3687
		47.00	5.38030	5.20303	1.050	-18.8ces	28.7222
		65.00	-13.11690	6.54653	$1 . \mathrm{sco}$	37.1501	10.6181
		63.90	1.12430	5.42635	1.000	-19.0533	21.3018
		71.00	5.92800	5.41872	1.000	-17.7274	28.3934
		75.00	- 11.17600	6. 68.59	1.000	-35.8897	13.3577
		77.01	-3.47000	6.65433	1.000	-27.0121	20.6501
		97.05	8.18200	6.34843	1.050	-14.1055	32.4805
		101.00	- 36000	5.50807	1.000	-24.5124	16.8124
		-03.00	3.03200	5.74 C 15	1.000	-21.7214	27.7554
		307.00	10.92400	5.43597	1.000	-12.5200	34.4650
		009.00	: 5.2 CaOD	3.15C24	. 852	-s.8e62	38.4003

			Mean Difference			85\% Confid	cre interval	
	(1) Cardition	(S) Condition	(1/)	Sto Emor	Sig.	Lower Bound	Upper Bounc:	
Tamhane	15.00	3.00	-1.18400	7.27452	1.000	-27.8741	25.5081	
		5.00	-14.17500	7.75803	1.000	-42.3453	14.2930	
		9.00	-14.87000	7.25943	1.000	41.3697	19.6577	
		11.00	-14.30300	6.40853	. 893	-37.3395	G.2235	
		35.03	-14.36500	7.51742	1.000	41.9768	12.1348	
		37.00	-22.77290	7.85703	505	-51.4178	5.8738	
		41.00	-15.21200	7.63077	1.000	43.1100	12.830	
		43.00	-1.14600	6. 32823	1.000	-34.3847	12.0637	
		47.00	-8.34\%00	$7.04 ¢ 35$	1.060	-34.5763	17.8823	
		35.00	-27.42400	7.44844	. 048	-54.7E. 13	-. 0907	
		69.00	-i3.18408	6.54835	1.000	-37.2193	1 C .8518	
		71.09	-8.48000	7.33723	1.000	-35.360	12.4390	
		75.00	-25.48400	7.55798	142	-53.2138	22458	
		77.30	-77.78400	7.54421	. 973	45.4 E 31	6.8951	
		97.00	-6.11605	7.27403	1.000	-31.8034	21.5714	
		;01.00	-88.80300	6.55e23	584	42.8727	5.4587	
		\$03.50	-11.27500	7.02 CO 2	1.000	-39. 2337	16.6817	
		107.00	-3.48400	7.35 ¢ 33	1.050	-30.47:3	23.5053	
		;08.50	1.86000	7.10355	1.060	-24.4e25	27.6625	
	35.30	3.00	13.1200	7.45442	1.000	-24.1745	40.655	
		5.00	22000	7.93707	1.300	-23.9C05	25.3405	
		9.00	-. 28000	7.44642	1.000	-27.6118	27.0518	
		\$1.00	. 3850	5.52394	1.000	-24.2359	24.4118	
		;5.00	14.386500	7.51742	1.000	-13.1245	41.9768	
		37.00	-8.37600	7.98405	1.000	-37.6e91	20.6071	
		41.00	-. 51300	7.78538	1.000	-29.3793	27.7473	
		43.00	3.24000	6.54531	1.000	-20.7912	27.2672	
		47.00	804000	$7.342 \% 19$	1.000	-20.8012	32.0672	
		65.00	-13.92600	7.63273	1.000	41.0349	14.9788	
		59.00	1.21200	6.75837	1.000	-23.5602	28.0232	
		71.00	5.81800	7.52625	1.000	-21.6833	33.6253	
		75.00	-1.08200	$7.7460{ }^{\circ}$	1.000	-38.4871	17.3811	
		77.00	-3.38630	7.72720	1.000	-31.7375	24.9518	
		97.00	8.29000	7.48363	1.000	-88.1033	3 e .6838	
		101.00	4.21200	6.78604	1.000	-22.0511	20.8271	
		-03.00	3. 12000	7.63123	1.000	-25.5615	31.7415	
		-07.00	-3.81230	7.54238	1.000	-18.7833	38.5678	
		909.00	15.96300	7.29765	. 886	- 30.7801	42.7721	
	(i) Conditisn	(J) Condicion	Mean Difference (a)		Sta. Error	Sig.	135\% Confiderce intervai	
				Lewer Sound			Upper Bounc	
Tamane	37.00	3.00	21.58000	7.75008	. 685	-6.9713	50.6473	
		5.00	8.58600	6. 21195	1.700	-21.5323	32.7243	
		2.05	8.046000	7.74163	1.000	-20.3108	3 C .5038	
		81.00	8.46400	¢. 95094	1.500	-17.9808	33.8956	
		15.00	22.77200	7.60708	. 505	-5.8733	51.4078	
		35.30	8.37800	7.98405	1.000	-20.8171	37.6691	
		41.00	7.50000	- 3.08541	1.000	-22.9331	37.1511	
		43.00	31.62430	¢. 5.7 P 04	1.000	-i3.6353	38.8858	
		47.00	14.42400	7.63850	1.060	- 3.6601	$42.454 \dagger$	
		55.00	-4.35200	7.91814	1.000	-33.7076	24.4638	
		59.00	8.58330	7.07E90	1.000	-0.4.4688	35.6648	
		71.00	74.26200	7.61462	1.000	-14.3873	429553	
		75.00	-2.51200	- O	1.900	-32.1450	28.7210	
		77.00	4.98500	- 0.00529	1.050	-24.3675	34.3735	
		97.0	-7.6E600	7.75538	.989	- 50.8609	4e. 1128	
		\$01.00	4.98400	7.05649	1.000	-21.8591	30. 1871	
		403.00	71.48600	8.08072	1.000	- $38.15: 2$	41.1432	
		107.00	18.28600	7.63208	. 233	-9.4492	48.6252	
		109.00	24.37200	7.59585	237	-3.5018	52.2458	
	41.00	3.05	14.02800	7.55139	1.000	-13.8752	41.7342	
		5.00	1.03000	0.01891	1.000	-25.3843	30.4563	
		9.00	.52600	7.53es5	1.000	-27.1160	28.1680	
		11.01	.80400	3.72973	1.050	-23.7845	25.8695	
		15.90	1E.21200	7.50377	1.000	-12.98\%	43.1300	
		35.08	. 31630	7.78536	1.5CO	-27.7473	29.3733	
		37.00	-7.52000		1.5co	-37.1E11	22.6341	
		43.00	4.08400	6.64431	1.050	-20.3433	28.4693	
		47.00	8.98400	7.43 C 59	1.300	-23.4c04	34.1296	
		55.00	- 52.21200	7.71878	1.900	40.5312	16. 1072	
		68.00	2.02600	5.65433	1.000	-23.137a	27.1938	
		71.00	9.73200	7.61152	1.500	-21.1843	34.8533	
		75.90	-50.27200	7.62451	1.060	-39.9709	19.4348	
		77.00	-2.57200	7.81123	1.000	-31.2201	2 e .6851	
		97.00	30.08900	7.55603	1.000	-17.6076	37.7608	
		101.80	-3.35600	0.88158	1.000	-23.5890	21.7970	
		303.00	3.93600	7.68447	1.000	-24.8903	32.8628	
		907.00		7.82445	1.000	-18.2240	39.7200	
		009.50	16.81200	7.33852	. 289	- 70.26 .44	43.8754	

			Мезл Difference			35\% Comfio	cee Interval	
	(1) Cendition	(J) Cenditien	($1-\sqrt{\text { d }}$)	Std. Emor	Sig.	Lower Bound	Upper Eound	
Tamhane	43.00	3.05	9.8840]	0.23513	1.0C0	-13.0397	32.5677	
		5.00	-3.92600	6. 62144	1.000	-29.0883	22.0328	
		9.00	-3.52200	6.24730	1.000	-28.4e57	11.4097	
		11.00	-3.12000	5.23 500	1.DCO	-22.3e87	18.C457	
		95.00	\$1.14030	5.32823	1.000	-32.08\% 7	34.3647	
		35.30	-3.24000	$6.54 E 31$	1.050	-27.2872	20.7912	
		37.00	- 31.62400	0.57 CO 4	1.200	-35.5888	13.6356	
		41.00	4.08400	6. 64431	1.000	-23.46S3	20.3413	
		47.00	280000	6.11804	1.060	-18.6e38	26.2638	
		-5. ${ }^{5}$	-18.27000	6.43597	. 203	-40.02才3	7.4588	
		52.00	-2. 23630	5.43433	1.050	-21.5en	17.7942	
		71.00	2.66000	6.33753	1.500	-20.6C31	25.6381	
		75.00	-14.39500	6.52163	267	-39.5472	8.8752	
		73.00	-6.83600	б.57e0s	1.300	-30.7868	17.6;68	
		97.00	6.03200	6. 26431	1.000	-18.96\%5	290325	
		101.00	-7.46000	5.41427	1.000	-27.3255	12.4055	
		-03.00	-. 12600	ธ. 58288	1.000	-24.5021	24.3461	
		107.00	7.8 e 400	6. 35808	1.000	-15.9837	31.6347	
		108.00	1274600	E. 085 E47	. 269	-8.5100	35.1440	
	47.00	3.00	7.18400	7.02361	1.000	-15.8815	33.1685	
		5.05	-5.920. 0	7.58839	1.000	-33.97/2	32.5212	
		90	-6.32800	7.07762	1.000	-32.2955	16.6385	
		:1.00	-5.20000	5.20300	1.000	-25.72E2	12.8022	
		-15.00	8.340300	7.14835	1.000	-iJ. 3223	34.5783	
		35.00	-8.04600	7.342i8	1.000	-32.9872	20.6912	
		37.00	-14.42430	7.63850	1.000	-42.4541	13.6031	
		41.00	-6.8e4j0	7.43055	1000	-34.1204	20.4024	
		43.00	-2.30030	6.11604	1.000	-25.2838	16.6838	
		65.00	- 98.07600	7.25155	. 820	45.7654	7.8034	
		62.00	\bigcirc	6.34844	1.000	-23.1270	12.4550	
		71.00	- 13230	7.15759	1.000	-28.3425	26.1255	
		75.00	- 97.13850	7.33358	88.	-44.2279	6.6550	
		77.00	-8.43000	7.38963	1000	-38.4781	17.e041	
		97.90	3.22200	7.08284	1.050	-22.7607	28.2547	
		108.00	-10.2ecjo	5.35460	1.000	-33.5209	13.6838	
		${ }^{503.00}$	-2.32030	7.44720	1.000	-35.2E33	24.3958	
		307.00	$48 \mathrm{B400}$	7.77059	1.000	-21.4e65	31.1948	
		909.00	8.84800	6.91735	1.000	-15.4324	$3 E .3284$	
	(1) Canditien	(J) Conditien	\qquad Difference ($\mathrm{I}-\sqrt{ }$)		Stal. Emor	Sig.	95\% Comidence lintervat	
				Lowes Bound			Upper Beund	
Tamina	65.00	3.00	28.24000	7.38495	. 077	-. 3912	53.3712	
		5.00	13.24600	7.07177	1.300	-15.8334	42.1224	
		9.00	12.74800	T.37E 1	1.300	-14.3278	38.8238	
		:1.00	33.11650	5.54ะ5s	1.300	-10.8181	37.1501	
		15.00	$27.4240{ }^{\prime}$	7.44844	045	. 0867	54.7513	
		35.09	13.02803	7.33373	1.000	-14.97a	41.0348	
		37.00	4.5E2J]	7.91814	1.300	-24.4C33	33.7078	
		41.00	32.21290	7.71878	1.000	-18.1072	4 C .5312	
		43.00	36.27030	B.43E97	.903	-7.4e98	40.0218	
		47.30	38.07500	7.27155	. 920	-7.8034	45.7554	
		59.00	14.24000	6.63158	.985	-10.2976	38.7576	
		71.00	48.24401	7.45 e 35	-983	-3.4122	46.3002	
		75.00	1.24090	7.67265	1.000	-28.2135	30.0835	
		77.00	9.54000	7.68041	1.000	-13.4E35	37.7438	
		97.00	22.3 Cajn	7.38421	400	4.8205	49.4385	
		001.50	8.81800	B. 6 5635	1.000	-15.73es	33.3718	
		103.00	85.14605	7.73478	. 889	-12.2300	44.5260	
		107.00	23.84030	7.47465	248	-3.4834	51.3634	
		108.00	$29.02400{ }^{\circ}$	7.23252	013	2.5094	55.5388	
	68.00	3.00	12.00000	8.48748	1.000	-31.9119	35.811	
		5.05	-.86200	7.02814	1.000	-28.7628	24.8038	
		900	-1.49200	5.47cte	1.000	-25.2294	22.2554	
		11.00	-1.12430	5.42605	1.000	-21.3018	19.5538	
		+5.00	i3.18430	5.54235	1.000	-i0.5Eif	37.2100	
		35.00	-1.21200	5.75237	1.000	-28.0232	23.5982	
		37.00	-2.59800	7.07518	1.000	-35.5848	18.4088	
		41.03	-2.02630	\%. 65433	1.000	-27.1935	23.1376	
		43.00	203508	5.40459	1.000	-17.7842	21.8682	
		47.30	4.92500	6.34e44	1.000	-18.4E50	28.1270	
		65.00	-14.24030	5. 59158	98\%	-35.7e75	10.2676	
		71.00	4.76430	6.55738	1.000	-ib. 3851	28.7731	
		75.00	$-12 \mathrm{Scose}$	5. 60344	1.000	-37.2777	12.8777	
		77.00	4.86000	3.78988	1.000	-29.5213	20.3213	
		97.00	9.08.30	8.43 Eaz	1.000	- 85.7400	31.8780	
		901.00	-5.42490	5.53698	1.200	-25.2263	15.3783	
		-03.00	1.20530	0.65231	1.000	-23.3241	27.1401	
		;07.00	9.7c000	8.578 .5	1.000	-144453	33.8459	
		309.00	14.78400	6.23472	. 975	--3.3156	37.8548	

			Mean Difterence			25\% Confid	nostinerval	
	(1) Cenditen	(J) Conditien.	(i-)	Stal Emar	Sig.	LOwer Sound	Upper Bound	
Tunhare	71.00	3.50	7.28000	7.25282	1.000	-12.4238	34.6158	
		5.00	-5.68601	7.78 ess	1.050	-34.1227	22.8007	
		9.00	-8.18800	7.25754	1.000	-32. 3895	20.4875	
		:1.00	-5.32030	6.41872	t.300	-29.3834	17.7374	
		\$5.00	8.48005	7.33723	1.000	-4.4295	35.3980	
		35.00	-5.8160]	7.57525	1.000	-33.5253	21.6933	
		37.00	-14.29200	7.61462	1.000	-42.8053	14.3513	
		41.00	-8.73201	7.51152	1.000	-34.8E63	21.1943	
		43.00	-2.9espo	0.33753	1.000	-25.9301	20.eus 1	
		47.00	13200	7. 15758	1.000	$-25.12 \overline{5}$	20.2925	
		65.00	-	7.45 e 35	. 880	40.3002	8.4122	
		68.00	- 72408	5.55736	1.000	-28.7731	19.30551	
		75.00	-17.0c400	7.58675	. 082	44.7 e 21	10.7541	
		77.00	-8.3C400	7.55201	1.000	-37.017s	19.4038	
		67.00	3.30450	7.25277	1.500	-23.3E31	30.6511	
		T1310	- 30.12800	5.58 E 26	1.000	-34.2259	13.8638	
		103.00	-2.78000	7.52774	1.000	-30.7829	25.1900	
		107.00	4.36630	7.38353	1.000	-22.0209	32.0127	
		109.00	10. 08000	7.91184	1.000	. 10.0130	36.1730	
	75.00	3.00	24.30000	7.50525	217	-3.2369	51.8388	
		5.09	-1.30630	7.97648	1.000	- 17.9632	40.6692	
		900	30.3 Comog	7.48 c 33	1.060	-18.874]	38.2900	
		11.00	31.17800	B. 68591	1.000	-13.3177	35.6697	
		-5.00	25.48400	7.55793	. 142	-2.2459	52.2136	
		35.00	11.08830	7.74683	1.300	-17.3171	38.4571	
		37.00	2.71200	6.02223	1.000	-25.7230	32.1450	
		41.00	10.27200	7.62451	1.000	-13.4349	38.9788	
		43.00	74.33000	$6.595 \overline{3}$. 297	-0.5752	38.6472	
		47.00	37.13600	7.39363	289	-7.9E58	4.2278	
		55.00	-1.84000	7.67235	1.000	-30.0835	20.2135	
		32.01	12.36030	\%. 60344	1.000	-12.8777	37.2777	
		71.00	i7.9C430	7.59575	892	-10.7641	44.7821	
		77.00	7.76000	7.76864	1.000	-20.7645	3 C .1945	
		97.00	20.302008	7.50452		-7.1053	47.6018	
		-31.00	6. 37000	6.61105	1.000	-85. 1293	31.8813	
		-03.00	14.200000	7.64033	1.000	-34.5569	42.6728	
		\$37.00	22.00000	7.59378	. 523	-5.9242	48.8242	
		108.00	27.08400	7.33835	. 946	1542	54.0138	
	(1) Condition (J) Coration		Mear Difference (\|- $\sqrt{-}$)	Std. Emor	Sig.	25\% Confidence interuai		
			Lower Eound			Upper Bound		
Tumhare	77.50	3.05		10.60000	7.48140	. 9.5	-10.9257	44.8857
		5.05	3.6C5J0	7.98245	1.500	-25.8054	32.2215	
		9.00	3.10830	7.47848	1.900	-24.3230	30.6335	
		\$1.00	3.47530	б. $\mathbf{6 5 4 3}$	1.500	-20.3e01	27.9121	
		15.08	07.78430	7.54421	. 373	-8.8851	48.4031	
		35.00	3.382 DD	7.72720	1.000	-24.30.83	31.7378	
		37.00	-	6.00e23	1.000	-34.3735	24.3976	
		41.00	2.57200	7.61123	1.000	-28.0851	31.2301	
		43.00	8.83600	6.57208	1.000	-17.5168	30.7896	
		47.50	8.43505	7.38862	1.050	-17.6041	38.4781	
		65.00	-8.8403n	7.580:1	1.000	-37.7439	18.4838	
		68.00	4.86030	6.798 .78	1.Jco	-20.3213	29.5213	
		71.00	8.3C40]	7.55201	1.000	-18.4039	37.0418	
		75.00	-7.7CODD	7.78 C 64	1.900	-38.1945	20.7645	
		97.00	12.8e593	7.42065	1.300	-2.4.3150	40.1510	
		201.00	-.52430	6.72505	1.000	-25.7730	24.1250	
		903.00	8.5 Cajo	7.32705	1.000	-22.2082	35.2242	
		107.00	14.36050	7.57003	1.300	-13.4738	42.0738	
		i09.00	19.32490	7.325972	. 789	-7.4637	40.2317	
	07.00	3.03	3.82200	7.21623	1.00 u	-27.5E44	30.4184	
		5.00	-6.00000	7.75 eg	1.060	-37.32a7	18.23 .97	
		9.00	-9.50000	7.20378	1.050	-35.9895	18.8385	
		11.00	-8.18230	8.34043	1.060	-32.4805	14.1085	
		15.30	5.11600	7.27403	1.0co	-21.5714	31.2034	
		35.00	-9.28003	7.48368	1.950	-38.6e:39	18.1038	
		37.00	-87.85030	7.75 E38	. 289	-45. 1125	10.8008	
		41.05	- $\mathbf{- 0 . 0 5 0 3 0}$	7.55068	1.050	-37.78es	17.6078	
		43.00	-6.03200	0.25431	1.050	-22.0325	12.8635	
		47.00	-3.23200	7.09234	1.050	-29.2647	22.7907	
		65.00	-22.3Comb	7.38421	460	49.4235	4.8205	
		68.50	-9.00830	6.48 Caz	1.060	-31.5760	16.7400	
		71.00	-3.3e490	7.28297	1.000	-30.08:1	23.5331	
		75.00	-20.3e3s0	7.50452	. 73.	-47.30.t8	7.1658	
		77.00	-i2.5e530	7.43063	1.500	-40.1659	14.8550	
		101.00	-i3.48290	6.42461	. 889	-37.3291	10.3451	
		203.00	-6.12050	7.55702	1.000	-33.8237	21.2037	
		107.00	1.83250	7.30591	1.000	-25.1638	28.4776	
		:09.00	8. 71600	7.04 e 77	1.000	-道 1375	32.8085	

H. TAMHANE'S T2 TEST EXCLUDING CONDITIONS 3, 15, AND 109

	(1) Concition	(1) Condition	\qquad			85\% Confic	or Interval
				Std. Errer	Sig.	Lower Eound	Unper Bound
Tamhane	5.05	9.00	-.50000	7.65217	1.000	-28.04E6	27.0468
		11.05	-. 13200	6.5Eec3	1.0 ca	-24.8614	24.5874
		38.00	-. 22000	7.83767	1.0 ct	-28.63e4	29.34e4
		37.00	-8.59e00	8.21195	1.000	-37.99E8	20.5038
		41.00	-1.03eca	$8.018{ }^{\text {d }}$	1.000	-29.74E0	27.6720
		43.00	3.02800	6.82144	1.000	-21.42E2	27.4812
		47.00	5.32800	7.58828	1.6cd	-21.3476	33.0038
		6E. 00	-13.24ecd	7.57177	1.000	41.4310	14.9360
		59.00	. 29200	7.02 e 14	1.000	-24.1838	26.1678
		71.00	5.59 ect	7.75 eez	1.000	-22.1116	33.5038
		76.00	- 11.30800	7.97548	1.000	-38.3e17	17.2467
		77.00	-3.50200	7.96245	1.000	-32.1151	24.6891
		97.00	9.06000	7.70098	1.000	-18.5348	35.6548
		101.00	+43200	7.03361	1.000	-29.6330	20.7298
		103.90	2.20000	8.03431	1.000	-26.3e40	31.6 e 40
		107.00	10.892000	7.75420	1.000	-17.9783	38.5623
	9.05	$5 . \mathrm{CO}$. 50000	7.89217	1.060	-27.04E6	23.0468
		11.00	. 38900	6.32944	1.000	-22.30e0	23.0420
		35.00	. 3 Cc 0	7.44842	1.000	-28.3907	28.9507
		37.00	$-8.05 e c 0$	$7.741 \mathrm{e3}$	1.000	-35.0156	19.5230
		41.00	-.53eca	7.53 e 55	1.000	-27.5193	26.4473
		43.00	3.52800	e.2472d	1.000	-18.6E43	25.9103
		47.05	8.32800	7.07782	1.000	-19.0! 18	31.6878
		65.00	-12.74900	7.37681	1.000	-30.1891	13.5721
		69.05	1.492 CO	8.47Cte	1.000	-21.08C8	24.6 C 48
		71.00	e.19eco	7.237E4	1.000	-19.6228	32.2148
		TED	-10.buacd	7.45023	1.000	-37.62E4	16.0094
		77.00	-3.10200	7.47 e 48	1.000	-29.6757	23.6597
		97.09	6.53000	7.20378	1.000	-10.2304	35.3504
		101.30	-3.83200	6.478 .20	1.000	-27.1323	10.20 .63
		103.00	3.40000	7.55284	1.000	-23.3421	30.4421
		107.00	11.192 cco	7.23832	1.000	-14.8841	37.2781

			Mean Difference			9536 Confid	nee Interval
	(1) Consition.	(1) Cendition	(1-J)	Std. Erres	Sig.	Lower Sound	Uaper 3ound
Tamhane	11.00	5.05	. 13200	6.39eg3	1.000	-24.5874	24.6614
		9.c0	-. 368 co	6.329 e 4	$1 . \mathrm{cos}$	-23.0420	$22.30{ }^{\text {c }}$
		36.00	-.0seco	0.023g4	1.000	-23.8227	23.5407
		37.05	-8.404C0	8.05cg4	1.000	-33.3782	16.4EC2
		41.00	-.904CD	8.72178	1.000	-24.9816	23.1820
		43.00	3.160 CD	6.23E00	1.000	-15.5843	21.9043
		47.05	5.950 CD	6.20368	1.000	-16.2582	2 C .1782
		5 5 .00	-13.17ect	6.54EC6	Leg	-36.5881	10.32 e 1
		68.0J	1.12400	5.40 ec	$1 . \mathrm{CCD}$	-18.5eรя	20.5130
		71.05	5.92 eco	6.43872	$1 . \operatorname{cco}$	-17.1870	23.8230
		7500	-11.17ecs	$6.86 ¢ 91$	$1 . \operatorname{CCD}$	-35.07e5	12.7245
		77.00	-3.47ecs	0.65433	1.600	-27.3203	20.3683
		97.00	8.192CD	e. 348.43	$1 . \mathrm{COD}$	-13.5425	31.9285
		101.00	4.30000	6.50807	1.000	-2¢.0237	15.4237
		103.00	3.03200	6.74015	1.000	-21.1218	27.9868
		107.00	10.32400	8.4369%	1.000	-12.2478	33.68E8
	35.00	$5 . C D$. 226 CD	7.23707	1.000	-28.1984	28.63 e4
		GCD	-2zccd	7.44642	1.060	-28.9507	28.3807
		T1.0.	. 08900	6.62384	1.000	-23.64e7	23.8227
		37.05	-8.37ect	7.08406	1.000	-36.gec8	20.2088
		41.05	-.8ieco	7.78 ¢28	1.000	-28.6887	27.0567
		43.05	$3.24 e c 0$	0.54531	1.000	-20.2088	20.7049
		47.00	8.04ect	7.34218	1.000	-20.2398	32.3358
		\% 6.00	-13.02ec0	7.63273	$1 . C C D$	-40.3577	14.3017
		¢\% 0	1.27200	0.758.37	$1 . \mathrm{CD}$	-22.9987	25.4227
		71.05	5.31ect	7.52E26	1.000	-21.0257	32.68 .77
		76.03	-11.06ect	7.74082	1.000	-38.30.64	18.8244
		77.00	-3.36800	7.72720	1.000	-31.0E23	24.2763
		97.00	6.250ct	7.45968	1.060	-17.4417	36.0017
		101.00	$\underline{+25200}$	6.76 ec	1.000	-28.44E8	20.0268
		103.00	3.12000	7.50123	1.000	-24.0095	31.0495
		\$07.30	10.88200	7.54238	1.000	-16.08.48	37.9188

			Mean Diffarence			G636 Confic	nce interyal	
	(1) Consition	(1) Cenditien	(1-5)	5tat Errar	Sig.	Lewer Sound	Uoper Bound	
Tamhane	37.00	5.00	8.59800	8.21185	1.000	-20.8038	37.9858	
		9.00	8.09 cos	7.74183	1.000	- $\mathbf{1 8 . 0 2 3 8}$	35.815 e	
		11.00	8.48400	e. 255084	1.600	-18.4E02	33.3782	
		35.05	8.37eco	7.85405	$1 . \mathrm{CCD}$	-20.2008	38.986	
		41.00	7.560 co	$8.0 \overline{56} 41$	1.000	-21.31E8	38.435e	
		42.00	11.8240]	e.s7ec.4	1.000	-13.02e.	38.2743	
		47.05	14.42400	7.83960	$1 . \mathrm{cco}$	-12.9281	41.7781	
		6 E .00	4.55200	7.23814	$1 . \mathrm{COO}$	-33.0060	23.7010	
		68.00	8.55808	7.07618	1.000	-15.7790	34.9550	
		71.05	14.29200	7.31482	$1 . \mathrm{CCO}$	-13.5878	42.2718	
		76.05	-2.71200	8.02223	1.600	-31.4333	26.0093	
		77.03	4.93 co	8.00828	$1 . \mathrm{CcD}$	-23.6870	33.8620	
		97.05	17.85 ecod	7.75E38	. 950	-10.7128	45.4248	
		101.00	4.18460	7.08 cta	1.000	-21.2288	28.5688	
		103.00	11.4 secg	8.100072	$1 . \mathrm{CLD}$	-17.4344	40.4224	
		107.00	18.26 eco	7.53208	. 659	-8.7543	47.3303	
	41.00	5.00	1.036.00	8.512 .81	1.cco	-27.5730	29.74E0	
		9.00	.53ect	7.53 ees	$1 . \mathrm{cco}$	-28.4473	27.5193	
		11.00	.204C0	8.72178	1.000	-29.3838	24.9810	
		$3 \mathrm{Er.0J}$	sieco	7.75036	1.000	-27.05e7	28.6887	
		37.00	-7.5seco	$8.00 \mathrm{C}_{41}$	1.000	-38.43E8	21.3120	
		42.00	$\therefore .00400$	8.84431	$1 . \mathrm{cco}$	-18.7Ec0	27.5780	
		47.00	8.86460	7.43058	1.000	-18.7411	33.4861	
		65.00	-12.212C0	7.71878	1.600	-30.64e5	15.4225	
		68.00	2.92800	8.85420	1.000	-22.5283	28.5843	
		71.00	8.73200	7.81152	1.000	-20.5181	33.9831	
		75.05	-10.27200	7.524E1	1.008	-38.2248	17.7408	
		77.05	-2.572C0	7.81123	1.000	-30.5272	25.3632	
		97.05	10.9 ec 0	7.55ces	$1 . \mathrm{cco}$	-18.9377	37.1297	
		101.00	-3.39eco	8.56188	1.000	-27.97E1	21.9871	
		102.00	3.83ес0	7.88447	1.500	-24.2614	32.1034	
		107. 00	11.72EC0	7.82945	$1 . \mathrm{CCO}$	-15.5e.71	32.0431	
	(1) Corcition (H)Candition		Mean Difference (1 -J)	Stal. Emas	Sig.	65\%\% Confidence Intervai		
			Lower Bound			Upper 3ound		
Tamhane	43.00	$5 . \mathrm{CD}$		-3.029c0	6.32144	1.000	-27.4812	21.4262
		9.00	-3.52ecs	8.24730	1.000	-25.9103	18.6543	
		T1.03	-3.150c0	5.236 ed	1.0 cd	-21.9043	15.5843	
		36.0	-3.24800	6.54E31	1.000	-28.7048	20.2088	
		37.00	-11.324c0	8.87ec 4	1.0 co	-38.2743	13.0283	
		41.05	4.064 CO	8.84431	$1 . \mathrm{ccd}$	-27.6790	12.7500	
		47.05	2.50 Cc 0	6.13602	1.000	-10.3201	24.7201	
		ธย ${ }^{\text {c }}$	- 18.27800	$8.46 E 67$. 11	-38.4487	8. 6847	
		38.00	-2.03eco	5.40488	1.000	-21.3887	17.3147	
		71.05	2.85800	8.337E3	1.000	-20.0368	25.3768	
		75.00	-14.33ecs	6.59183	. 985	-37.9ec7	¢. 2887	
		77.00	-8.83ecs	8.57ecs	1.000	-38.2038	18.931日	
		97.0J	8.032 CD	8.26431	1.000	-18.4118	28.47E8	
		301.00	-7.46ECD	5.41427	1.000	-28.8451	11.9251	
		-02. 00	-. 12800	8.68288	1.000	-24.0061	23.7531	
		107.00	7.504 CD	8.358 CB	$1 . \mathrm{CCD}$	-15.3212	30.4482	
	47.00	5.00	-5.82ect	7.58828	1.000	-33.0038	21.3478	
		9.60	-8.328cs	7.07782	1.000	-31.6878	12.0118	
		11.05	-ธ.26ccs	8.203c8	$1 . \mathrm{cco}$	-28.1782	$18.2 \mathrm{ER2}$	
		35.05	-8.04ecs	7.34218	1.0 CD	-32.33E8	20.2398	
		37.00	-14.424C0	7.832E0	1.060	-1.7781	12.9281	
		41.03	-6.834C0	7.43 CE	$1 . \mathrm{cco}$	-33.4891	19.7411	
		43.05	-2.80000	$8.1180 \cdot 4$	1.000	$-24.72 \mathrm{C} 1$	19.1201	
		65.0J	- bı.ovecs	7.27155	. 767	+5.3103	6.5683	
		86.03	-. 93 ec	8.34e44	1.000	-27.5838	17.6918	
		71.00	-.13200	7.15758	$1 . \mathrm{cco}$	-25.7678	25.4938	
		7503	-17.13ecs	7.383 eg	. 942	-43.5727	8.3007	
		77.00	-8.43ecs	7.35682	1.000	-35.6222	16.9502	
		97.00	3.23200	7.09294	1.000	-22.3015	23.6265	
		101.00	-10.280ct	6.354ed	1.000	-33.012e	$12.46 e 8$	
		103.00	-2.928C5	7.44720	1.000	-20.5e28	23.73 e8	
		107.00	4.90400	7.17 ees	1.060	-20.6298	30.5578	

			Mean Difference			6596 Confid	noe Interval
	（1）Concition	［J］Cendition	（fl－j）	Sto．Error	Sig．	Lower Bound	Upper Sound
Tamhane	68.00	$5 . \mathrm{CD}$	13.248 CD	7.97177	1.000	－14．93E0	41.4310
		9 CD	12.748 co	7.37681	1.000	－13．6731	38.1861
		－1．80	13.11 eco	8．54E¢8	928	－10．3361	38.5881
		36.09	13.02800	7.53373	1.000	－14．30．17	40.3577
		37.00	4.65200	7.84814	$1 . \mathrm{cco}$	－23．70t0	33.0050
		41．0	12.21200	7.71878	1.000	－15．4225	39.8445
		43.05	18.27 eco	8.45597	¢ 61	－8．6247	39.4487
		47.00	18.07 Ccs	7.27165	707	－6．9583	45.1103
		86.00	14.240 CD	$8.8 \overline{168}$	． 960	－8．6840	33.4740
		71.05	18.844 CD	7.45 e35	．788	－7．7Ece	45.6398
		75.00	1.84 CCD	7.573 ¢5	1.000	－26．5328	29.4128
		77.09	8．840c］	7.86011	1.000	－17．7843	37.08 .43
		97.03	22.30200	7.35421	．366	－4．8．48	48.78 Ce
		101.00	8．8ieco	8.88532	1.000	－15．8455	32.7775
		3ca．00	18.148 CD	7.73478	． 98.4	－11．5438	43.8368
		107.90	$23.94 \mathrm{cc口}$	7.47425	.78	－2．6203	59.7043
	89．00	$5 . \mathrm{cd}$	－．89200	7.02814	1.000	－28．5678	24.1838
		9．0	－1．49200	6．47018	1.000	－24．80．48	21.68 Cs
		11.03	－1．12400	5.49965	1.000	－20．6138	18．5ees
		35.09	－1．21200	8.75837	$1 . \mathrm{cod}$	－25．4227	22.9887
		37.00	－8．55eco	7.97916	$1 . \mathrm{CCD}$	－34．9560	15.7780
		41.05	－2．02801	8.85430	1.000	－28．5843	22.5283
		43.00	2.038 co	5.40488	1.000	－17．3147	$21.32 \mathrm{B7}$
		47.00	4.83800	0.344^{44}	1.000	－17．8618	27.5838
		65.00	－14．24000	6． 56.150	960	－38．4740	8.5840
		71.00	4.70400	8.55738	1.000	－18．7828	25．rece
		76.05	－12．30000	8.50344	1000	－38．6730	12.0738
		77.09	4.80000	0.78816	1.000	－28．¢180	19.7120
		97.00	8.08800	0．408e2	1 ceg	－15．ie40	31.3000
		101.00	－6．424CD	5.36898	$1 . \mathrm{ccog}$	－25．7233	14.8753
		＋63．00	1.90900	2．57231	1 cca	－22．7133	28.5293
		107.00	8.70000	8.57818	$1 . \mathrm{CCO}$	－13．8e10	33.2 C 18

			Mean Difference			EE\％Corfic	noe interval
	（1）Conaition	（j）Condition	［f－Ji	Stal．Emer	Sig．	Lower Bound	Upper Bound
Tamhane	71.00	$5 . \mathrm{CB}$	－5．8secs	7.768 e 2	$1 . \mathrm{COS}$	－33．5038	22.1118
		9.00	－8．19ecs	7．26754	1.000	－32．2148	19.6228
		：1．03	－5．329CD	8.41972	$1 . \mathrm{cco}$	－28．3230	17.1070
		35.00	－5．3tecs	7.52525	1.000	－32．8677	21.0257
		37.00	－14．29208	7.81482	1.000	－2．2718	13.8878
		41.53	－ 0.73205	7.81152	1.000	－33．9831	20.5181
		43.00	－2．80800	8．33763	$1 . \mathrm{Cco}$	－25．37Es	20.0388
		47.00	． 13200	P．15766	1.500	－25．4638	25.7578
		65.05	－18．34400	7.45 e35	．788	－5．0388	7.7808
		68.05	4.70400	8.55738	$1 . \mathrm{cco}$	－28．7ece	15.78 .28
		75.00	－17．00400	7.56575	ges	4.4 .09 Cg	10.0828
		77.05	－8．30400	7.55201	$1 . \mathrm{cco}$	－36．3417	17.7337
		97.05	3.36400	7.26217	$1 . \mathrm{cco}$	－22．7071	20.4351
		101.00	－： 0.12800	8.58528	1.500	－33．6427	13.3807
		103.00	－2．798en	7.82774	1.600	－3D．1053	24.5133
		167.00	$4.88 \mathrm{ec口}$	7.38383	$1 . \mathrm{cco}$	－21．3674	31.3684
	75.00	5.00	11.30800	7．97E48	1.000	－17．2457	30.8817
		9.00	10．50800	7.49033	$1 . \mathrm{cco}$	－18．0084	37.6254
		11.05	11.17800	8.88881	1.600	－12．7245	35.0785
		36.00	11．0arco	$7.74 \mathrm{Ce}^{2}$	$1 . \mathrm{cco}$	－18．6244	зs．бес¢
		37.00	2.51200	8.02223	$1 . \mathrm{CeD}$	－29．0093	31.4333
		41.05	10.27200	7.82451	$1 . \mathrm{cc口}$	－17．74c8	35.2848
		42.05	14.33 eco	B． 59183	． 985	－6．2e87	37.9007
		47.05	17.13 eco	7.353 eg	． 942	－9．3007	43.5727
		65.05	－1．94000	7.973 es	$1 . \mathrm{ced}$	－29．4129	25.5328
		68.00	12.30000	6．50344	1.000	－12．0730	38.8720
		71.02	17.00400	7.56875	ges	－10．0828	44.09 CE
		77.0	7.70000	7.750 e 4	1.600	－20．1055	35.5065
		97.05	20.38800	7.50452	． 608	－8．500．	47.23 l
		101.00	6．97edo	8.81106	1.000	－17．524］	$31.27 e 0$
		102.00	14.20800	7.34030	1.000	－13．6et3	42.2773
		107.00	22.00000	7.55378	411	－5．1514	48.8514

			Mean Difference			95\% Confic	noe interual
	(1) Condition	(N) Condition	($\mathrm{b}-\mathrm{J}$)	Std. Error	Sig.	Lower Sound	Upper Bound
Taminane	77.00	$5 . \mathrm{CD}$	3.60800	7.95245	1.000	-24.6984	32.1151
		$9 . C D$	3.108 ca	$7.47 \mathrm{C46}$	1.000	-23.5897	29.6757
		11.05	3.47ect	6.55433	1.000	-20.3e83	27.3203
		35.00	3.38200	7.72720	1.060	-24.2763	31.0523
		37.00	-4.28800	8.00828	1.000	-33.6820	23.5870
		41.03	2.57200	7.8 ± 123	1.000	-25.3832	30.5372
		43.5	$8.83 \mathrm{ec口}$	8.57 ecs	1.000	-16.9318	30.2038
		47.03	8.436000	7.35862	1.000	-16.9602	35.8222
		65.00	-8.840.00	7.80011	1.000	-37.0e43	17.7843
		38.00	4.60000	8.78818	1.000	-18.7180	28.9180
		71.35	9.304CD	7.552011	$1 . \mathrm{COJ}$	-17.7337	33.3417
		76.05	-7.700cd	7.7 ¢ect	1.600	-35.5055	20.1055
		97.03	12.88800	$7.496 e 8$	1.cct	-14.7505	38.48 .5
		101.30	-. 32400	8.79590	1.000	-26.tego	23.5210
		503.30	8.50800	7.927 CE	1.000	-21.5139	34.5299
		107.00	14.30cco	7.57608	1.000	-12.8023	41.4023
	87.00	5.00	-9.060c0	$7.70{ }^{\text {7 }}$ \% 9	1.000	-36.8548	18.53.48
		0.00	-6.55CcI	7.20278	1.000	-35.3E04	18.230
		31.03	-9.192C0	8.34 e 43	1.000	-31.9266	13.5425
		36.00	-8.20ccd	7.462 eb	$1 . \mathrm{COJ}$	-39.0017	17.4417
		37.09	-17.85ecd	7.75 こ3	. 958	-45.4248	10.1128
		41.05	-10.09eco	7.55 cee	1.000	-37.1297	16.9377
		43.05	-6.032c0	0.20431	$1 . \mathrm{CLJ}$	-28.4758	16.4118
		47.00	-3.232C0	7.09284	1.000	-28.5265	22.1615
		65.01	-22.308C0	7.39421	. 306	- 8.7 Fece	4.1040
		69.00	-8.059C0	8.48 ee 2	1.000	-31.3CCJ	15.1440
		71.00	-3.354c0	7.25217	1.000	-28.4351	22.7071
		75.05	-20.358C0	7.50452	. 600	47.23 e 1	8.5001
		77.03	-12.80800	7.49 ce 8	1.000	-38.48e5	14.7E05
		101.30	-13.49200	0.49461	. 996	-36.7E24	9.7 eg 4
		103.00	-0.150.cia	7.56702	$1.0 C D$	-33.2524	20.9324
		307.30	1.83200	7.30691	$1 . \mathrm{CCD}$	-24.5083	27.7703

			Meant Difference			95\% Confid	noe Interval
	(1) Concition	(3) Cenditan	(fl-J)	Sta. Errar	Sig.	Lower Sound	Upper Sound
Tamhane	101.00	5.00	4.43200	7.03351	1.060	-20.7868	27.6338
		9.60	3.332 CD	8.47820	$1 . \mathrm{CCD}$	-19.2eg3	27.1333
		11.05	4.30000	5.50967	1.000	-15.4237	24.0237
		35.00	4.21200	6.rbec\%	$1 . \mathrm{cco}$	-20.0258	29.4498
		37.03	$\bigcirc 16400$	7.08648	1.000	-29.5E¢8	21.2288
		41.03	3.39 cc 0	8.5 ¢¢tag	1.000	-21.3871	27.9781
		43.03	7.480000	5.45427	1.000	-11.9201	25.8451
		47.00	10.35000	6.354 ed	$1 . \mathrm{CCD}$	-12.4960	33.0108
		6\%.00	-8.318CD	8.86932	$1.0 c 0$	-32.7775	15.1405
		68.09	5.42400	5.86898	1.0 Co	-14.6763	25.7233
		51.00	10.12800	8.56520	1.000	-13.38.87	33.6427
		76.0	-6.57ect	6.31105	$1 . \mathrm{CCD}$	-31.27ed	17.5240
		77:0	. 82400	8.70 ± 80	1.000	-23.5210	25.1890
		97.0	13.49200	$6.454{ }^{\text {e }} 1$. 985	-8.7e24	38.7524
		-03.00	7.33200	8. 37685	1.000	-17.31ed	31.9800
		107.00	15.12400	8.55ec 4	. 262	-8.4055	35.7135
	103.00	$5 . \mathrm{CD}$	$-2.30 \mathrm{cco}$	8. 03431	1.000	-31.5840	25.6840
		9.00	$-3.40 \mathrm{CCD}$	7.55284	$1 . \mathrm{cco}$	-30.4421	23.6421
		31.05	-3.03200	6.74015	$1 . \mathrm{cca}$	-27.1858	21.1218
		36.00	-3.12000	7.30123	$1 . \mathrm{cca}$	-31.0495	24.6095
		37.00	-11.4gecd	8.08072	1.000	40.42 e 4	17.4344
		41.00	-3.93ecd	7.85447	$1 . \mathrm{cco}$	-32.1834	24.2814
		43.5	.128C0	0.806288	$1 . \mathrm{cca}$	-23.7531	24.0091
		47.05	2.22800	7.44720	1.000	-23.73e8	29.5828
		65.05	-16.148CD	7.73478	. 984	-4.6368	11.5438
		68.00	-1.20800	6.57231	1.000	-28.52E3	22.7133
		71.00	$2.750{ }^{\text {d }}$	7.32774	1.000	-24.5133	30.1053
		75.05	-14.20800	7.34030	1.000	42.2773	13.8813
		77.00	-6.508c0	7.32705	$1 . \mathrm{cco}$	-34.5298	21.5138
		97.03	6.15000	7.55702	1.000	-20.9324	33.2524
		001.00	-7.33200	8.87895	1.000	-31.9800	17.3100
		107.00	7.79200	7.540e 4	1.000	-18.5812	$35.10 \mathrm{E}^{2}$
	107.00	5.00	-10.092C0	7.76420	1.000	-38.5823	17.1783
		9 co	-11.19200	7.26 e32	1.000	-37.2781	14.6841
		-1.00	-10.324c0	8.43897	1.000	-33.6858	12.2478
		3 3.05	-10.91200	7.54238	1.000	-37.9188	18.0948
		37.0	-18.28800	7.53200	. 8 E6	+ 7.3303	8.7643
		41.03	-11.72800	7.62845	1.000	-38.0431	15.5871
		43.00	-7.504CD	8.358 c 6	1.000	-30.4492	15.1212
		47.00	4.88400	$7.17{ }^{\text {2 }}$ - 8	1.ces	-30.5678	20.6288
		6 6.0]	-23.940c0	$7.474{ }^{5} 5$.178	-50.7c03	2.6203
		69.05	-9.700ct	8.57918	1.000	-33.2e18	13.8616
		71.00	$4.99 e c 0$	7.35383	1.005	-31.3684	21.3874
		75.00	-22.000c0	7.58378	. 411	-48.i614	5.1514
		77.00	-14.300c0	7.57008	1.000	- 1.4023	12.6023
		97.00	-1.83200	7.30081	1.005	-27.7703	24.5083
		101.00	-15.124C0	8.58ec4	952	-38.7125	8.4855
		103.00	-7.79200	7.845e4	$1 . \mathrm{CCO}$	-35.3es2	12.58.12

I. TAMHANE'S T2 TEST FOR LEVEL 3 (EFFORT)

	(i) Concition		Mean Difference (1-」!	Std. Ersor	Sig.	95\% Confidence Interval	
		(J) Condition	$\frac{i-5 j}{10.43800}$			Lower Bound	Upper Sound
Taminane	2.00	10.00		6.37104	1.000	-10.8782	31.5502
		14.60	:5.05200 ${ }^{\circ}$	2.74280	.act	4.316	25.7674
		17.60	4.00000	3.03440	1.000	-15.3672	7.3712
		19.00	27.185CC ${ }^{\circ}$	5.04014	. 0 cc	7.3513	47.0247
		27.60	8.30800	E.80511	1.000	-14.5224	31.1384
		29.60	18.51300^{\prime}	2.9132 g	. 000	5.1102	27.2217
		39.00	30.72300	E.41202	. 000	9.4516	52.0044
		$34 . C D$	-2.74000	2,86053	1.000	-14.3289	8.3489
		42.00	-1.41200	0.72009	1.000	-23.2071	21.0031
		$4 \mathrm{c} . \mathrm{CD}$	5.882cc	$2.8264{ }^{\text {e }}$. 060	4.2213	27.0627
		49.60	-8.84000	2.88531	1.000	-18.0708	4.3908
		51.60	12.32000	5.82216	1.000	-8.7576	34.427e
		$53 . \mathrm{CD}$	7.55400	e. $1764{ }^{\text {e }}$	1.000	-18.8041	21.9721
		89.00	11.936cc ${ }^{\text {P }}$	2.89305	. 021	. 3188	23.2521
		33.00	24.396C0	5.52413	. 007	2.8782	48.1358
		86.CD	\$1.22800	6.35088	1.0cc	-11.3693	33.8453
		Sō.cd	:11.856cc ${ }^{\text {P }}$	2.73234	. 007	1.2015	22.8505
		$76 . \mathrm{CD}$	11.12200	5.47330	1.000	-10.3288	32.7108
		76.00	25.85200 ${ }^{\circ}$	¢.09c̈ce	.000	5.736	45.5575
		8 cog	24.35300°	2.89798	. 000	13.1524	$35.812 e$
		B3.c0	-5.10500	3.181833	1.000	-18.8161	6.7001
		37.60	i9.37600	5.433 e 2	. 208	-2.103e	40.935 e
		25.00	82.77600	2.78963	. 000	7.2380	29.5140
		85.c0	¢. $348 \overline{\text { ce }}$	6.52547	1.000	- 35.3782	$28.07 \mathrm{E}^{2}$
		100.00	$-845 \mathrm{CO}$	2.83481	1.000	-12.0440	10.1480
		108.00	8.75200	5.82328	1.00.c	-12.3558	$30.388{ }^{\text {a }}$
		100.00	28.5720°	5.58420	.000	8.8718	48.4722
		12.200	77.5846C	2.74900	.00.0	8.804 :	28.3238
		136.00	-84400	2.93328	1.000	-11.8893	10.8513
		119.00	14.54400	E.8.82Es	.998	-7.802e	38.8908
		127.00	99.800ce	2.843 E5	. 000	0.8762	30.929e
Difference \quad aE\% Confidence interval							
	il) Concition	(J) Condition	il-j)	Std. Error	Sig.	Lower Bound	Upper Bound
Tamhane	10.00	2.00	-10.43600	5.37104	1.000	-31.5502	10.8782
		14.60	4.8180 C	6.3529 1	1.000	-16.4298	25.8618
		17.60	-34.84400	5.53602	.9e8	-38.07ec	7.12ec
		19.60	16.75200	6. 82748	.968	-9.9719	43.47E9
		22.00	-2.12300	7.40473	1.000	-21.1120	20.8500
		29.60	8.03000	5.4425 e	1.000	-16. 3042	27.4642
		31.60	20.29200	7.10076	. 680	-7.5004	48.0344
		$34 . c 0$	-13.17000	5.48788	1.000	-34.8552	8.3032
		$42 . \mathrm{ca}$	-51.84800	7.33827	1.000	-40.5712	16.3762
		45.60	5.5560 C	E.39721	1.000	-15.6572	28.7563
		49.00	-87.2780c	¢.418e3	. 541	-38.570e	4.0186
		59.00	1.8.84C0	7.28218	1.000	-26.5409	30.3088
		53.60	-2.83200	7.70062	1.000	-33.07e6	27.2766
		51.60	1.50000	5.43037	1.000	-18.838.	22.8381
		83.c0	;3.880cc	7.1.3057	1.000	-14.1685	42.0685
		8 BCD	.72200	7.38238	1.0ce	-28.025e	29.5098
		88.60	1.5200c	E.347Ee	1.000	-18.5058	22.5458
		76.60	.75600	7.14757	1.000	-27.2167	28.7317
		76.00	15.21500	8.84222	1.000	-11.56E5	41.2975
		30.c0	13.85200	2.4612	. 986	-7.3368	36.2436
		33.00	-iE.54400	5.4980 g	. 916	-37.1384	6. 0.504
		37.50	8.84000	7.15548	1.000	-19.06e7	36.8487
		25.c0	8.34000	E.36040	1.000	-12.75e7	28.4387
		88.00	4.09600	7.1.9768	1.000	-32.2221	24.04e1
		100.00	- 11.33440	5.40068	1.000	-32.8100	6.5420
		108.00	-1.854cc	7.18672	1.000	-28.7347	29.3567
		186.00	18.13000	8.8393e	. 984	-8.8343	44.8083
		112.03	$7.120 \cdot 0$	5.35613	1.000	-13.8306	28.16 c
		116.00	-71.09000	E.433.2	1.000	-32.422e	10.2628
		196.00	4.10800	7.309C4	1.000	-24.500]	32.7:80
		127.00	c. 38400	5.40523	1.00C	-11.9782	30.8072

	(1) Concition		\qquad	Std. Erior	Sig.	96\% Confidence Interval	
		(J) Condition				$\begin{array}{r} \text { Lower Bound } \\ \hline-25.7874 \end{array}$	Upper Eound
Tamhane	84.00	2.00	- 18.05200^{\prime}	2.74290	. 000		4.3188
		10.60	-4.81600	6.35281	1.000	-25.6618	16.4298
		17.00	-19.08000°	3.00220	. 600	-30.9040	-7.30e0
		19.CD	12.1350.c	5.02685	1.000	-7.6278	31.8988
		21.00	-6.74400	5.79836	1.000	-28.5:24	18.0244
		29.00	1.48460	2.85036	1.000	-0.3108	12.7389
		31.00	- 5.87600	E.39404	. 657	-5.5328	$38.884{ }^{\text {e }}$
		34.c0	-17.7220.C'	2.927 ¢2	.000	-26.2523	-8.3317
		42.50	-:8.48400	5.70368	. 674	-28.3951	5.8671
		46.50	. 84000	2.78389	1.000	-6.09Ee	11.87Ee
		49.c0	-21.832CC'	2.83524	. 000	-32.9698	-10.7941
		51.50	-2.732CC	5.80484	1.000	-24.7745	18.3105
		53.00	-7.546CC	e. 18271	1.000	-31.7971	18.7011
		$31 . C D$	-3.11500	2.85724	1.000	-14.3002	8.0582
		83.60	8.34400	5.50851	1.000	-12.309E	30.9975
		88.60	-3.82400	6.73407	1.000	-28.3777	18.7287
		-6.co	-3.38600	$2.98 \overline{0} 4$	1.000	-13.5503	7.4583
		75.00	-3.88000	E.45552	1.000	-25.3118	17.5918
		78.00	+0.80000	6.04885	1.000	-8.2420	30.4430
		90.00	8.33600	2.93360	. 408	-1.756e	20.428 e
		33.60	-20.18000'	2.89384	. 000	-31.8421	-8.4778
		97.c0	4.3240 C	E.46587	1.000	-17.1888	25.8168
		95.c0	3.72400	2.73371	1.000	-8.97E8	14.4238
		98.00	-8.7040c	6.5053e	1.000	-30.3549	12.95 eg
		100.00		2.85042	.000	-28.2613	-5.0387
		108.00	-e.3000c	E.48058	1.000	-27.8510	15.2510
		130.00	33.52000	6.04467	. 978	-8.3076	33.3476
		112.00	2.51200	2.71348	1.000	-8.1088	13.132 e
		115.0		2.85981	. 000	-28.839	4.5025
		119.0	-.53000	E.88542	1.000	-22.7902	21.7742
		127.00	4.746000	2.80916	1.000	-8.2475	15.743E
127.00							
Differense \quad g5\% Confidence interval							
	(1) Condition	iJj Condition	il-j	Sta. Ersor	Sig.	Lower Sound	Upoer Sount
Tanthane	17.03	2.00	4.1580 C	3.8344 C	1.000	-7.8712	15.8872
		$10 . \mathrm{cJ}$	14.44400	E.50602	. 988	-7.1800	39.0780
		14.00	\%9.080cc	3.0 .0220	.000	7.3080	30.8140
		19.00	$31.18 \overline{06}$	E.183e.4	. 000	10.8078	51.5842
		21.00	12.31600	E.83208	1.000	-10.9938	35.8258
		29.00	20.52400°	3.15928	. 000	8.1581	32.8884
		31.00	34.736000°	5.54600	. 000	12.94 E8	E6.52e2
		34.00	1.288 cc	3.20235	1.000	-11.26e2	13.9022
		42.00	2.59606	5.84681	1.000	-20.3048	25.57 es
		46.00	20.05000^{\prime}	3.05008	. 000	7.8407	32.0583
		49.00	-2.83200	3.11621	1.000	-16.0377	8.3737
		51.60	30.326cc	5.7531 e	. 800	-9.2738	38.8289
		53.00	11.51200	e. 20791	1.000	-13.2452	38.2592
		$3 . C D$	- $6.944 \mathrm{Cl}^{\circ}$	3.13623	. 000	3.8602	28.2278
		83.00	22.43400°	5.85741	. 000	e.1808	60.8271
		80.CD	16.2360°	6.87513	. 983	-7.8644	38.33 e 4
		B6.CJ	16.9840°	2.932e5	. 000	4.2471	27.6809
		76.00	16.29000	5.80778	970	-6. 3288	37.2288
		78.00	28.86000°	E. 21302	. 000	8.1952	E0. 1248
		80.co	28.3800°	3.11098	.000	18.1951	40.59e9
		83.60	-1.10000	3.25400	1.000	-13.8362	11.53 e 2
		87.00	23.38400°	6.81787	. 020	1.3974	45.4500
		85.c0	22.75460°	3.02618	.acc	$10.83{ }^{\text {ces }}$	34.8312
		86.c0	10.3560 C	5.85921	1.000	-11.3742	32.58 E 2
		100.00	3.58000	3.09658	1.000	-8.0224	15.1424
		100.00	12.78000	6.83217	1.000	-8.3532	34.8832
		110.00	$32.580 \mathrm{cc}{ }^{\text {, }}$	5.20928	.000	12.1300	E3.03C0
		112.00	21.5720°	3.00793	. 000	8.7958	33.3482
		115.00	3.35460	3.14038	1.000	-8.82e2	15.65 e 2
		116.00	18.55200	E.81220	. 536	4.2835	$41.357 E$
		127.00	23.83500^{\prime}	3.03452	000	11.8947	35.8213

			mean Difference			9E\％Confic	ce Inserval
	（1）Conctition	（J）Condition	－ $\mathrm{i}^{\text {－}}$－${ }^{\text {a }}$	Std Errar	Sig．	Lower Bound	Upper Bound
Tamhane	19.00	2.00	$-27.189 \mathrm{CC}^{\prime}$	E． 04814	． 000	－47．0247	－7．3513
		10.00	－36．752cc	e． 827748	． 989	43.4756	8.9718
		14.60	－32．13б6C	E． 02685	1.000	－31．3998	7.8278
		17.60	－31．195ce＇	E．193e4	000	－61．5042	－10．9078
		21.00	－＞8．880cc	7.1736 e	． 987	－4e． 9847	9.2047
		29.60	－00．8720c	6.12417	1.000	－30．79e4	8.4524
		31.60	3.5400 C	Q．8597e	1.000	－23．31ce	30.3906
		34.65	－2e．028c0 ${ }^{2}$	E． 15024	． 000	－E0．153e	－0．7024
		42.60	－28．800cc ${ }^{\text {－}}$	7． 10534	． 032	－58．4150	－．765C
		$4 \mathrm{BE} . \mathrm{CD}$	－31．t日连	E． 07508	1.000	－31．1383	$8.74{ }^{2}$
		49.60	－34．02300＊	E．098es	． 000	－ 4.0509	－13．0961
		57.60	－ 04.885000	7.02672	1.000	－42．3741	12.838 .1
		53.00	－i9．8B4C0	7.47928	． 987	－48．9702	8.6022
		87.60	－18．25200	$5.11: 22$	． 780	－35．3274	4.5234
		63．C0	－2．72200	8．84855	1.000	－29．8911	24.4071
		86.00	－ 5.8 .85000	7.13024	1.000	－43．3728	11.8528
		Be．co	－iE．2320C	5.02316	728	－34．9744	4.5104
		75.00	－1．8．835cc	e． 0.5321	1.000	－43．03e7	11.0447
		78．C0	－1．5380C	8.50178	1.000	－27．33e3	24.2843
		80.60	－2．8000c	E．03221	1.000	－22．32e1	$17.22{ }^{1}$
		33.60	－32．280cc ${ }^{\text {d }}$	E． 18311	． 000	－52．0442	－11．8478
		37.00	－7．81200	8.81638	1.000	－34．9648	18.2808
		85.00	－8．412cc	5.04320	1.000	－28．2301	11.4081
		96．C0	－20．8400c	8．95002	． 757	－48．0448	9．3548
		100.00	－28．13860 ${ }^{\circ}$	5，07988	．oce	48.0918	－8．180．1
		108.05	－18．43BCC	e． 628002	． 982	－45．554E	8.8325
		110.05	$1.3345 C$	e． 53582	1.000	－24．4047	27.1727
		112.00	－9．824CC	5.03227	1.000	－28．40c8	10.1528
		10.00	－27．83206 ${ }^{\text {d }}$	5.112 E 4	．0cc	－47．9124	－7．751e
		118.05	－12．84400	7.07515	1.000	－40．3403	15.0523
		127.00	－7．39800	E．034E0	1.000	－27．3622	12.5862

			Mean Difference			96\％Confid	nse Interval
	（1）Condition	（J）Condition	i－ji	Std．Error	Sig．	Lawer Bound	Upper Eound
Tamhane	21.00	2.00	－8．30500	5.80511	1.000	－31．1384	14．5234
		10.00	2.12000	7．40473	1.000	－28．55e0	31.152 C
		14.00	e．74400	6.78535	1.000	－10．0244	26.5124
		17.00	－ 12.31600	0.83208	1.00 C	－35．8258	10.8938
		19.00	18.85000	7.17366	． 987	－8．2047	48.2647
		29.00	8.20300	E． 87136	1.000	－14．8727	31.2587
		37.00	22.42000	7．33452	． 738	－8．6302	51.5202
		34．CD	－11．04600	E．884e4	1.000	－34．27e6	12．1206
		42.00	－4．72000	7．85：e8	1.000	－38．7080	20.2680
		45.60	7．83400	E．82943	1.000	－15．23e8	30.8088
		45.00	－55．14000	5．8493e	． 983	－38．14Es	7.8488
		55.00	4.0120 C	7.55685	1.000	－25．8911	33．71E1
		53.00	－．80400	8.00971	1.000	－32．1553	30.5473
		81.60	3.82800	5．8800	1.00 C	－18．4ici	26.8681
		33.60	गe．03800	7.51652	1.000	－13．3324	45.5084
		$8 \mathrm{SO} . \mathrm{CD}$	2.82000	7．83479	1.000	－27．1583	32.9983
		8 cc 0	3.84000	E． 99340	1.000	－16．1018	28.3978
		7 B .00	2.83400	7.47924	1.000	－28．3908	32.1588
		76.00	17．344C0	7.19860	1.000	－10．7954	$45.40 \overline{34}$
		S0．co	1e．93000	E．84671	057	－6．01E4	38.0754
		83.60	－13．41500	5.8228 e	1.000	－29．8910	8．5590
		87.60	\＄1．053co	7.4808 C	1.000	－18．23e4	40.3724
		25.00	10．45300	6．83082	1．0cc	－12．3473	33.2632
		日̇．cD	－1．885c0	7.51787	1.000	－31．385 7	27.4657
		100.00	－9．255co	6．832Ee	1.000	－32．190］	13.978 e
		108.03	． 44460	7．497E4	1.000	－28．0023	28.7902
		150.05	2C．254CC	7.19527	．917	－7．8548	48.3928
		112.03	$8.25 \overline{5 c}$	$5.73: 32$	1.050	－13．523e	32.0358
		1：6．0J	－2．8520C	E．8832 1	1.000	－31．8944	14．0904
		119.00	8．23800	7.83370	1.000	－23．6426	28.1045
		127.00	11．402c0	5.8357 e	1.000	－11．4584	24.4424

	(1) Condition		$\begin{gathered} \text { Mean } \\ \text { Diference } \\ \text { i-J! } \end{gathered}$	Std. Error	Siag.	95\% Confidence Interval						
		(J) Condition				$\frac{\text { Lower Bound }}{-27.9217}$	Upper Sound					
Tamhane	29.00	2.00	-18.51800	2.61386	. 000		-5.1103					
		10.00	-8.05000	5.44258	1.000	-27.4342	15.3042					
		14.00	-1.48400	2.83035	1.000	-12.7389	9.8100					
		17.00	-20.52400	3.15928	. 000	-22.8688	-8.1581					
		19.00	10.97200	5.12417	1.000	-9.4524	30.3984					
		23.00	-8.20eco	5.8713 E	1.000	-31.2687	14.9727					
		31.00	04.21200	E.48301	. 982	-7.3322	36.7582					
		34.00	-i8.250c0	3.09840	. 000	-31.3441	-7.1676					
		42.00	-17.92800	6.79730	. 5.1	-40.8782	4.8202					
		46.00	- 52400	2.88203	1.000	-12.1177	11.0887					
		49.00	-23.35000	3.00107	. 000	-35.1023	-11.80e7					
		51.00	-4.12600	5.82052	1.000	-28.5612	18.1692					
		53.00	-8.01200	e. $240 \% 4$	1.00 C	-33.5540	15.5300					
		83.co	-4.58000	3.02188	1.000	-16.407e	7.2478					
		83.60	7.85000	¢.523e8	1.000	-14.1022	29.8522					
		86.00	-6.2300c	E.81785	1.000	-28.1570	17.5010					
		86.60	-4.55000	2.87039	1.000	-16.79e1	$8.67{ }^{\text {e }}$					
		76.00	-6.32400	E.54361	1.000	-27.107e	te.458e					
		76.00	9.13800	5.14380	1.000	-11.05e1	28.3381					
		so.co	7.87200	2.93980	. 988	-3.5893	16.8133					
		53.00	-21.82400°	3.14183	. 000	-33.2218	-6.3281					
		37.08	2.88000	5.55370	1.000	-18.8638	24.8339					
		95.00	2.28000	2.93534	1.000	-8.1124	13.8324					
		28.00	- 90.18800	E.525E2	1.000	-32.1574	11.5214					
		100.00	-17.48400°	2.88520	.000	-29.0618	-5.8402					
		108.05	-7.78400	E.58517	1.000	-28.8452	14.1172					
		110.00	12.05600	E. 14000	1.000	-8.1311	32.2431					
		112.00	1.04500	2.85831	1.000	-10.2502	12.34 ez					
		13.00	-17.18000°	3.02410	.000	-28.9924	-5.323e					
		119.0	-1.97200	E. 35020	1.000	-24.5734	20.6284					
		127.00	3.28400	2.87544	1.000	-8.35ec	14.8340					
Tamhane	31.00	2.00	-30.728CC	5.41202	000	-52.0044	-9.451e					
		10.00	-20.2320c	7.10076	. 880	-48.0344	7.5004					
		14.60	-7E.87500	E.32464	. 8.7	-23.884e	5.5328					
		17.CD	-34.73бсе ${ }^{\text {- }}$	5.54600	.000	-E8.528.2	-12.945e					
		19.00	-3.54006	e. 85970	1.000	-35.3900	23.3 uce					
		21.00	-22.42000	2.43462	. 738	-51.5202	8.8502					
		29.6	-54.21200	E.483C1	. 983	-35.7582	7.3322					
		34.60	-32.46800^{\prime}	E.50784	. 000	-56. 10 e6	-11.5295					
		42.00	-32.14000	7.38632	. 008	-es.race	-3.2984					
		$4 \overline{6}$ C0	-14.73000	E.4380e	. 671	-38.1108	6.5386					
		49.60	-37.586000	E.45946	.000	-E0. 0232	-16.1328					
		5 5 .60	-98.40800	7.29255	. 98.7	-48.8515	10.1355					
		53.00	-23.22400	7.72950	. 751	-53.4e30	7.0350					
		63.co	-12.72200	E. 47061	. 282	-40.2906	$2.706{ }^{\text {c }}$					
		83.60	-e.33200	7.21725	1.000	-34.5006	21.910 E					
		86.60	-19.53000	7.32234	. 988	-48.4348	8.4348					
		BE.CD	- 18.77200	5.35673	. 244	-25.86C.	2.4188					
		76.60	-19.530̈CC	7.17642	. 985	47.6324	8.550 C 4					
		7 Cb CD	-6.07600	8.87444	1.000	-31.933e	21.8318					
		80.60	-e.3400c	5.4587 e	1.000	-27.7928	15.1126					
		83.00	-36.83500,	E.538) 3	. 000	- -7.5888	-14.0832					
		S7.c0	-11.35200	7.15628	1.000	-38.4782	18.7752					
		85.cD	-11.852C0	5.40742	1.000	-23.2410	0.3070					
		90.CD	-24.35000	7.21 cee	. 324	- 62.6340	3.8740					
		100.00	-31.876C0	5.44145	. 000	-53.0633	-10.2687					
		108.05	-21.87j0c	7.19748	. 684	-50.1471	9. 1951					
		110.03	-2.156Ca	8.875eg	1.000	-28.0528	24.7408					
		112.00	-32.154CC	5.39722	1.00 c	-24.3048	日.05ee					
		115.05	$-31.372 C^{\circ}$	E.4721E	. 000	-E2.9762	-6.8588					
		118.05	-36.15400	7.33921	1.000	-4i.210.4	12.5424					
		127.05		E. 44598	1.000	-32.3323	10.4783					

			Mean Bifference			95\% Corifi	cee Intervat
	\{li Concition	(J) Sondition	(i-J)	Std. Error	Sig.	Bower Sound	Upper Bound
Tamhane	34.03	2.00	2.74000	2.93053	1.000	-9.8489	14.3288
		10.cD	13.17000	E.457e8	1.000	-8.3032	34.5552
		14.co	17.78200'	2.92762	. 000	6.3317	29.2523
		17.60	-1.28500	3.29236	1.000	-13.3022	11.2602
		19.00	29.828 CO	5.15084	. 000	6.7024	E0.1538
		21.00	\$1.04000	5.82424	1.000	-12.1205	34.2185
		29.00	19.25600	3.05840	. 000	7.1576	31.3441
		31.50	33.486CC	E.507e4	. 000	11.3295	E5.1085
		42.60	1.32]CC	5.81093	1.000	-21.5093	24.1853
		$46 . C 0$	18.73200°	3.03782	. 000	8.858 .3	20.5057
		49.c0	-4.10000	3.04638	1.000	-16.0238	7.3238
		$53 . C D$	-5.050c0	6.71484	. 987	-7.3969	37.5159
		53.60	10.24400	e. 282 e	1.000	-14.3804	24.8584
		8:.00	14.87600'	3.0862 e	.00t	2.9721	28.3799
		83.00	$27.136 C^{\circ}$	5.81813	. 001	5.0815	40.210 E
		86.60	12.88डc0	6.94736	1.000	-8.8897	28.8267
		88.00	;4.895cc ${ }^{\text {c }}$	2.91773	. 000	3.2738	28.1182
		76.00	13.93200	5.58617	. 988	-7.9448	35.8088
		75.00	28.39200°	5.17037	. 000	8.0681	48.8948
		Sü.00	27.123CC,	3.04512	. 000	15.2090	39.0470
		53.00	$-2.38 \mathrm{CLC}$	3.18523	1.000	-14.8351	10.0991
		B7.00	$22.116 \mathrm{CC}^{\circ}$	6.57631	. 044	.1991	44.0328
		85.00	$21.51600 *$	2.85211	.000	8.8598	33.0721
		26.00	g.0seco	6.01985	1.000	-12.8937	31.1587
		100.00	1.79200	3.01400	1.000	-10.0054	13.5694
		108.DD	+1.492C0	5.59272	1.000	-10.4619	33.4659
		100.00	31.31200^{\prime}	E. 16658	.000	11.0241	51.59 ge
		152.00	20.30400	2.83328	.000	8.3208	31.7572
		10.50	2.0950	3.03907	1.000	-0.8985	14.1085
		136.00	-7.23400	5.77389	. 771	-5.4071	36.9761
		127.00	22.5400^{\prime}	3.02212	.0ce	10.7100	34.3891

			Mean Sifference (1-J)	Std. Error	Sig	ge\% Confidence Interva)	
	(il) Condition	(J) Condition				Lower Bount	Upper Bound
Tamhane	42.05	2.00	1.41200	5.72009	1.000	-21.0831	23.8071
		10.60	11.84800	7.33627	1.000	-10.9762	40.5712
		14.60	12.46400	E.7030e	. 874	-5.9671	2 E .8961
		17.60	-2.52000	5.84091	1.000	-25.57eg	20.3648
		19.60	28.800c0	7.10534	032	.7850	56.4150
		21.60	E.izūco	7.88189	1.000	-20.2500	38.7090
		29.60	17.82600	5.78730	-6E1	4	40.6782
		31.60	32.14000°	7.38532	.00e	3.2954	e0.80ce
		34.00	-1.3260c	E.81093	1.000	-24.1553	21.5093
		48.00	17.43400	E.74476	732	-5.1839	39.8919
		49.00	-5.42800	5.78488	1.000	-28.0920	17.2360
		51.60	13.73200	7.52401	1.000	-15.7171	43.1511
		53.00	8.81800	7.94620	1.000	-22.195e	40.0276
		51.60	13.348 CO	E.77584	1.000	-0.35eg	28.0529
		83.CD	26.80600	7.45005	. 260	-3.3568	64.9718
		$8 \mathrm{CLC0}$	12.64000	7.82077	1.000	-17.1677	42.4677
		58.00	13.35600	E.83605	1.000	-0.0443	35.7603
		76.00	12.80400	7.41344	1.000	-18.4 328	41.8208
		$\overline{6} \mathrm{CO}$	27.03400	7.11951	. 077	-. 3082	54.9342
		S0.CD	25.80000°	6.76433	. 000	3.1385	48.4515
		53.60	-3.885С0	E.8385	1.000	-26.0414	18.2484
		37.00	20.736C0	7.42107	. 928	-8.258e	48.834 e
		35.00	20.18 CCO	5.71574	. 210	-2.2907	42.65 e 7
		26.00	7.78000	7.45242	1.000	-21.4092	28.9292
		100.05	. 48400	5.74794	1.000	-22.135¢	23.0839
		108.50	30.18400	7.43191	1.000	-18.8250	38.2530
		110.00	28.8340°	7.11578	016	2.1248	57.8434
		112.00	i8.97300	E.706cg	. 387	-3.46E4	41.4184
		115.00	.765co	5.757 C 1	1.000	-21.8413	23.4773
		118.03	15.858cc	7.68925	1.000	-13.6701	45.5821
		127.05	24.212C0	5.75221	124	-1.403.	43.8278

			Mean Sifference			9E\% Confid	noe Interval
	(i) Concition	(3) Condition	ib-J	Std. Error	Sig.	Lower Bound	Upper Bound
Tamhane	48.00	2.00	-85.9820^{-1}	2.82048	. 000	-27.0627	4.8213
		10.00	-6.55600	E.39731	1.000	-28.7593	15.6573
		14.00	-. 04000	2.72389	1.000	-11.87Ee	8.905e
		17.60	-20.090000'	3.0306	OCC	-32.0563	-7.9407
		19.60	11.12600	E.07608	1.000	-8.7483	31.1383
		29.60	-7.85400	5.82943	1.000	-30.60es	15.2398
		29.60	.5240c	2.85203	1.000	-1.1.0897	12.1577
		31.00	14.73600	E.430C8	. 971	-9.838e	38.1900
		34.00	- $6.73200{ }^{\text {c }}$	3.03763	. 00.0	-30.5057	-6.9583
		$42 . \mathrm{CB}$	-17.45400	5.7447 C	. 732	-39.8918	5.1338
		49.60	-22.83200	2.81819	.0cc	-34.2538	-11.4 101
		51.60	-3.87200	5.84725	1.000	-25.3741	18.5301
		53.00	-8.480CC	2. 20131	1.000	-32.9818	15.20¢8
		89.60	4.05000	2.83957	1.0ce	-15.5017	7.4487
		03.00	8.40400	E.54ce7	1.000	-13.4521	30.2201
		88.60	-4.78400	5.77554	1.000	-27.4736	$17.24{ }^{\text {e }}$
		85.60	-4.03506	2.783es	1.000	-14.8310	8. 358 e
		75.50	-4.80000	E.se9ce	1.000	-28.4JE8	18.3550
		7e.co	ع.esocc	E.03580	1.000	-10.3807	28.6307
		30.co	8.3 escc	2.81828	. 674	-3.9208	16.8128
		83.00	-21.10000	3.05288	. 000	-33.0684	-8.17ce
		87.00	3.354 CC	E.50c3e	1.000	-18.2728	25.04ce
		95.c0	2.78400	2.818 ec	1.000	-8.2523	13.8203
		8 Bc co	-5.844cc	E.5595	1.000	- 31.4373	12.1793
		100.00	-10.8400c ${ }^{\text {d }}$	2.85438	. 000	-28.2295	-5.6505
		108.00	-7.24000	5.52365	1.000	-28.8543	14.4743
		150.00	12.55000	E. D 2206	.989	-7.4265	32.58 es
		112.00	1.57200	2.83004	1.000	-8.357?	12.5317
		115.50	-18.83600'	2.84 :87	.000	-28.1507	-6.1213
		178.03	-1.44000	E.7072E	1.00 C	-23.8880	20.9920
		127.00	3.838 cC	2.8929e	1.000	-7.5147	15.1307

			Mean			geio Confid	nce Interval
	(i) Condition	(J) Condition	i1-J	Std Error	Sig.	Lower Bound	Deper Sound
Tamhane	48.05	2.00	8.84000	2.98931	1.000	-4.39C6	18.9709
		10.60	17.27600	E. 417883	. 541	4.0186	38.57 CE
		14.CD	21.89200'	2.83524	. 000	10.7941	32.3689
		17.00	2.832 CC	3.11521	1.000	-9.3737	15.0377
		19.00	$34.028 \mathrm{cc}^{\circ}$	E.0389E	. 000	13.8981	E4.05eg
		21.00	1E.148CC	6.84938	. 993	-7.9488	38.1458
		29.00	$23.350 \mathrm{cc}^{\circ}$	3.03107	. 000	11.5097	35.1023
		31.00	37.56800	E.45945	. 000	16.1728	50.0232
		34.50	4.100 CC	3.04838	1.000	-7.8238	18.0238
		42.60	E.42800	E.78468	1.000	-17.23e0	28.0920
		45.00	22.832 CC	2.61518	.000	11.4101	34.2536
		$53 . C 0$	19.18000	E.68782	. 331	-3.1896	41.438 e
		53.00	14.34400	0.220CE	1.000	-10.1202	38.3082
		81.00	48.736C6	2.97560	. 000	7.1885	30.4355
		83.60	31.23500°	E.570e0	.000	8.3410	53.1310
		85.00	-18.08800	E.725ee	. 627	-4.7374	40.8534
		68.C0	〕e.725c\%	2.82513	. 000	7.7378	28.8544
		76.00	-8.03200	5.52021	. 450	-3.8638	28.727 e
		75.00	32.49200	5.11868	.000	$12.3 \overline{500}$	E2.5900
		80.c0	31.226 CC	2.85052	. OCC	$18.85 \mathrm{e}^{2}$	42.7.983
		83.60	1.73200	3.10063	1.000	-10.4047	13.8087
		87.CD	$28.216 \mathrm{CC}^{\circ}$	5.63044	. 0002	4.4796	47.8521
		95.00	25.8100.	2.850 e 3	.000	14.4691	36.9328
		98.00	13.18800	E.57244	1.000	-8.7042	35.0502
		100.00	5.88200	$2.8244{ }^{\text {\% }}$	1.000	-5.5544	17.3384
		108.00	j5.5820C	5.54497	. 625	-9.201e	37.3058
		110.00	35.412 CC	5.11420	.006	15.3202	¢6.5038
		152.00	24.404CO	2.84720	.00C	13.2625	26.5256
		195.00	0.19000	2.98:17	1.000	-5.4723	17.5643
		108.00	21.35400	E.72774	. 305	-1.1327	43.9007
		127.05	26.84000"	2.83282	.000	15.1808	38.1781

			Mean Difference			95\% Confid	nce Interval
	(i) Concition	(J) Consition	[1-Ji	Stat. Error	Sig.	Lower Sound	Upper Eound
Tamhane	51.00	2.00	-12.32000	6.92215	1.000	-34.427e	9.7878
		10.60	-1.98400	7.26218	1.000	-30.3089	26.5409
		14.co	2.73200	E.85484	1.050	-18.3105	24.7745
		17.00	- i. 32 zcc	6.7531 e	.908	-38.8298	e.2738
		15.00	14.86 ClCO	7.02672	1.050	-12.338.	42.3741
		29.00	-4.01200	7.58885	1.000	-33.7151	25.6911
		29.60	4.18650	6.880¢2	1.000	-18.1682	23.5812
		$3: 50$	18.40800	7.28255	. 987	-10.1355	49.8515
		$34 . \mathrm{CJ}$	-16.03006	$5.714 E 4$. 98.7	-37.5168	7.3958
		42.00	-13.73200	7.52401	1.000	-43.1511	15.7171
		48.00	3.87200	5.84725	1.000	-18.5301	25.3741
		46.00	-TE.180C0	6.88722	33%	-41.436e	3.1788
		53.00	-4.813cc	7.87611	1.000	-35.8538	28.0218
		69.60	-.384c0	5.8758	1.000	-22.7053	21.8373
		83.60	12.97660	7.37612	1.000	-16.7943	$40.94 \mathrm{e3}$
		6 c .00	-1.00200	7.54763	1.000	-30.8332	28.4492
		88.00	-.354cc	5.58972	1.000	-22.3873	21.8593
		76.60	-1.12600	7.33614	1.000	-28.8487	27.5937
		75.60	13.33200	7.0410 e	1.000	-14.2299	40.8939
		B6.co	12.08 CLCO	E.e3715	1.000	-10.2081	34.3451
		83.60	- 77.42600	5.74365	. 725	-38.2940	5.1380
		37.c0	7.05600	7.34584	1.000	-21.89E8	36.3079
		95.00	e. 45600	5.81772	1.000	-15.6350	28.5470
		9\%.co	-¢.97200	7.3775 1	1.00 c	-34.8477	22.2037
		100.59	-12.28800	5.85048	1.000	-35.4823	$8.94 \mathrm{e3}$
		108.00	-3.5500C	7.35678	1.000	-32.3827	25.2267
		110.03	18.25200	7.03628	1.000	-11.2981	43.8031
		112.09	E.2440C	E.057E 1	1.000	-16.8101	27.2981
		115.00	-12.884CC	E.8300	1.000	-35.2387	2.3817
		119.05	2.224 CC	7.48551	1.000	-27.1135	31.5615
		127.00	7.45000	E.654e2	1.000	-14.750e	28.71ce

			Mean Difference			90\%6 Confid	nce Inmerval
	(li) Condition	(J) Condition	[1-Ji	Std. Error	Sip.	Lawer Sound	Up.per Eound
Tamhane	52.00	2.00	-7.504CC	8.17848	1.000	-31.8121	18.8041
		10.60	2.83200	7.70062	1.000	-27.216E	33.076E
		14.60	7.54800	6.16271	1.000	-16.7011	31.7971
		$17 . \mathrm{CD}$	- 71.512 Co	e. 28781	1.0c. ${ }^{\text {c }}$	-38.2682	13.2452
		19.60	18.89400	7.47828	. 887	-0.6022	48.8702
		21.60	$834 \mathrm{C0}$	2.05971	1.000	-20.5472	32.1553
		29.60	9.81200	e. 24074	1.000	-15.5300	33.554 C
		31.60	23.22400	7.72950	.751	-7.03E0	53.4630
		34.60	-16.244C0	e. 28285	1.000	-34.8684	14.3564
		42.00	-2.81500	$7.84 \overline{30}$	1.000	-40.027e	22.1556
		48.60	8.480ca	8.20131	1.000	-15.9008	32.5818
		49.60	-14.344c0	8.22005	1.000	-38.8082	10.1202
		51.60	4.8160 C	7.87611	1.000	-28.0218	35.8538
		61.c0	4.4320 Ca	e 23011	1.000	-20.07c0	28.8340
		33.60	18.82200	7.80848	1.000	-13.8743	47.4583
		86.c0	3.72400	7.87057	1.000	-27.4745	34.822E
		68.00	4.45200	8.15007	1.0ce	-18.7796	28.863 e
		76.60	3.85060	7.77258	1.060	-28.738E	34.1145
		76.60	18.14800	7.48275	1.000	-11.1905	47.48 es
		30.00	12.89460	e. 21944	.ee8	-7.5778	41.3459
		33.60	-12.81200	e. 28982	1.6co	-37.3385	12.1125
		87.00	11.87200	7.7798 e	1.080	-19.5828	42.3288
		25.c0	11.27200	e. 17442	1.000	-13.0210	35.55 EC
		88.00	-1.155c0	7.80977	1.000	-31.7274	29.4154
		100.05	-8.45200	e. 2542 e	1.000	-32.95e8	15.8528
		108.05	1.24600	7.78020	1.0co	-28.247 1	31.7431
		110.05	21.08600	7. 48014	. 921	-8.2603	¢0.3983
		112.00	1 C .080 Co	e. 185 ± 0	1.000	-14.1965	24.3iEE
		136.00	-8.14800	e. 2312 C	1.000	-32.854	18.358 .1
		196.08	7.04000	7.82733	1.000	-23.86e3	$38.04 \mathrm{e3}$
		127.00	12.28000	e. 20321	1.000	-12.1237	25.7167

			Mean Difference			9E\% Canfic	nee Imerval
	(i) Concition	(J) Condition	(i-J)	3 3td. Error	Sig.	Lower Sound	Upper Bound
Tamhane	81.00	2.00	-11.836CO ${ }^{\text {d }}$	2.88105	. 021	-23.2521	-. 0190
		10.00	-1.5000c	5.43037	1.000	-22.938	18.8381
		$14 . \mathrm{cD}$	3.116 CO	2.85724	1.000	-8.0882	14.3002
		17.00	-96.844CC'	3.13523	. 000	-28.2278	-3.8602
		19.00	15.2520.	5.11122	. 780	4.3234	35.3274
		2 cco	-3.82ecc	E.88005	1.000	-28.8361	18.4101
		29.60	4.58000	3.02 :2e	1.000	-7.247e	10.4076
		$31 . C 0$	18.78200	5.47081	. 282	-2.70es	40.2905
		34.00	-14.87000	3.05088	. 001	-2e.8799	-2.8721
		42.00	-13.34500	5.77584	1.000	-28.0528	8.35 e8
		$46 . C 0$	4.05600	2.93957	1.000	-7.4487	15.5617
		49.60	-18.77600	2.87860	. 000	-20.43EE	-7.1306
		51.60	.3840C	E.8789e	1.000	-21.9373	22.7053
		$53 . C 0$	-4.43200	8.23011	1.000	-29.9340	20.0700
		33.00	12.48000	E.53783	1.000	-8.4774	34.3974
		8 8.CD	-.70300	5.80545	1.000	-23.5340	22.1180
		8\%. CO	.02000	2.84721	1.000	-11.1251	11.138 .1
		75.00	-. 74400	E.53iE4	1.000	-22.4\%24	20.8544
		73.00	12.71600	5.13080	. 980	-8.4372	33.8692
		90.60	12.45200 ${ }^{\circ}$	2.877 e 2	. 017	. 7978	24.1084
		s3.co	-17.04400'	3.1207 e	. 000	-20.2583	4.8287
		37.CI	7.44000	E.54176	1.000	-14.3388	29.2189
		95.00	8.84000	2.83244	1.000	+4.4426	18.1225
		DE.CO	- -5.58000	E.593ee	1.000	-27.5328	18.358 e
		100.00	- 32.85400°	2.94572	. 007	-24.4139	-1.354
		108.00	-3.19460	E.5562e	1.000	-26.02C2	18.8522
		130.00	3 . 83600	E. 12750	. 473	-3.5021	38.7741
		122.00	5.82300	2.89328	1.000	-5.57e7	18.8357
		115.00	-12.58000°	3.0021 C	. 012	-24.3302	-.8287
		178.05	2.8Joco	5.738 ee	1.00 C	-10.0499	25.1659
		127.00	7.88400	2.85409	. 982	-3.6984	18.42e.4

			Mean Difference			B6\% Confid	nee Interval
	fliconation	(J)Condition	(1-Ji	Std. Error	Sig.	Lower bound	Upper Bound
Tamhane	62.00	2.00	-24.396'C0	5.52413	. 007	48.1150	-2.67e2
		10.00	-12.85000	7.18 ¢5 7	1.00 C	-42.0885	$14.168{ }^{\text {a }}$
		14.60	-8.344c0	5.50651	1.000	-30.997E	12.3085
		$17 . \mathrm{Ca}$	-28.40400	E.85741	. 000	-E0.8271	-8.1609
		19.00	2.79200	B. 84685	1.000	-24.4071	28.2911
		27.00	-16.03500	7.51852	1.000	-45.5004	13.3324
		29.00	-7.88000	6.58380	1.000	-20.8822	14.1022
		37.60	6.33200	7.21725	1.000	-21.916	34.5805
		34.00	-27.13800	5.81813	001	48.2105	-5.0815
		42.00	-25.80500	7.45806	250	- 54.8718	3.3558
		45.60	-8.40400	5.54087	1.000	-30.2201	13.4121
		49.00	-31.2360°	E.570e0	. 000	-53.1310	-8.3410
		51.60	-92.076C0	7.37612	1.000	40.94e3	16.7643
		53.00	-96.89200	7.85648	1.000	-47.4593	13.6743
		51.00	-12.480CO	E.53193	1.000	-34.3974	8.4774
		86.co	-13.180¢C0	7.47480	1.000	-42.424E	18.0689
		${ }^{65} .60$	-12.440co	5.50831	1.000	. 34.0740	8.1940
		78.68	- 13.204 CO	7.28331	1.000	41.8327	15.2247
		TECD	1.25600	0.85304	1.000	-25.9988	28.5114
		80.co	-. 5060	5.58992	1.000	-21.9004	21.8644
		B3.60	-28.504CC ${ }^{\text {, }}$	E.84774	.000	-51.8906	-7.3176
		37.60	-5.02000	7.27:08	1.000	-33.4791	23.4361
		85.cD	-5.8200c	5.51982	1.000	-27.3228	18.0529
		- ${ }^{\text {c co }}$	-18.8480.C	7.30308	. 98ε	-46.6323	10.53 ea
		100.00	-25.344CC'	5.5529e	.004	-47.1725	-3.5155
		100.00	- 5.844 CC	7.28215	1.000	-44.14e4	12.5584
		100.00	4.176 cc	0.83023	1.000	-23.0888	31.42 Ce
		192.00	-8.8320.c	E.509e3	1.000	-28.4973	14.8332
		15E0	-26.040cc ${ }^{\circ}$	E.59305	.00e	-48.8618	-3.0981
		130.09	-9.8520C	7.42227	1.000	-38.2030	16.1960
		127.05	$4.52 \overline{6} \mathrm{C}$	6.55738	1.000	-28.4411	17.2481

			Mean Difference			96\% Confid	nce Interval
	OM Concirion	(1) Condition	(1)-j)	Std. Error	Sig.	Lower Bound	Upper Bound
Tamhane	68.00	2.00	-11.22800	5.75068	1.000	-33.8463	11.3893
		10.60	-.78200	7.35238	1.000	-20.3098	28.0258
		14.60	3.82450	6.7340%	1.000	-18.7297	28.3777
		17.00	-16.236cc	5.87913	. 683	-38.33e4	7.8644
		19.Ca	15.8500.0	7.13024	1.000	-11.8528	43.8728
		23.C0	-2.8200.	7.85478	1.00 C	-32.9983	27.1583
		29.00	¢. 2360 cc	E.8178E	1.060	-17.5810	28.157 C
		39.00	18.53000	7.30234	.98e	-8.4348	48.4348
		34.60	-13.88200	E.84)3E	1.000	-26.0257	8.9887
		42.00	-12.8400c	7.82077	1.000	-42.4677	17.1677
		46.60	4.764CC	$5.775 \mathrm{E}_{4}$	1.060	-17.84Ee	27.473 e
		$49 . \mathrm{ca}$	-18.08800	5.7658	. 227	-40.3534	4.7174
		$51 . \mathrm{CD}$	1.08200	$7.547 E 2$	1.000	-28.4482	20.6332
		53.00	-3.72400	7.97007	1.000	-34.822E	27.4745
		$01 . C D$.70acc	5.80645	1.00 C	-22.1才80	23.5340
		83.60	13.186 CC	7.47480	1.000	-18.0689	42.4249
		${ }^{65 . C 0}$. $72 \overline{62 C}$	E.729ce	1.000	-21.907C	23.2630
		75.00	-.036cc	7.43732	1.000	-29.14e4	28.0744
		78.00	14.42400	7.1443 e	1.000	-13.5438	42.3918
		B0.cs	13.180 cc	5.78500	1.000	-8.022e	35.8429
		83.CD		5.89983	941	-28.4012	8.7282
		B7.co	8.148 CC	7.44482	1.00 C	-20.8921	37.2681
		25.c0	7.54800 C	5.74687	1.000	-15.0530	30.1480
		8e.cs	-4.8300C	7.47610	1.000	-34.1422	24.3822
		100.00	-12.17600	5.77670	1.060	-34.9975	10.5455
		108.05	-2.4760C	7.45572	1.050	-31.6583	28.7083
		110.00	17.34400	7.14 : 2	1.000	-10.9532	45.3012
		112.05	e. 3350 c	5.73707	1.000	$-18.228 \mathrm{C}$	28.8010
		18.50	-1.87200	6.80781	1.000	-24.7024	10.9584
		118.05	231600	$7.502{ }^{\text {c }}$	1.000	-26.401e	33.033 e
		127.05	$8.572 C 0$	6.78284	1.000	-14.165	31.3085

	(1) Concizion	dJ. Condition	Mean Difference il	Std. Error	Sig.	9e\% Confidence Imterval	
						Lower Bound	Upper Bound
Tamhane	68.15	2.00	-it.85600\%	2.73234	. 007	-22.5505	-1.2616
		10.60	-1.52000	6.34768	1.000	-22.54E8	18.5058
		14.60	3.09500	2.08654	1.000	-7.4583	13.8503
		17.00	-1e.98400	2.98205	.000	-27.8605	4.2471
		19.60	\% 5.23200	E.02315	.720.	4.5104	24.9744
		39.60	-3.84500	E.75340	1.000	-28.3978	18.1018
		29.60	4.58000	2.87039	1.000	-8.87e!	15.7981
		3:.cD	19.75200	5.35673	. 244	-2.41e6	39.96С
		34.CD	-14.826c\%	2.81773	.000	-28.1192	-3.2738
		42.CD	-13.386\%	$5.8200{ }^{\text {co }}$	1.000	-35.7803	8.3443
		$46 . \mathrm{CD}$	4.036 CO	2.78363	1.000	-6.85E8	14.8316
		49.CD	-78.73600\%	2.82513	. 000	-29.5544	-7.7376
		57.CD	. 38400	E.58973	1.000	-21.65e3	22.3873
		53.00	4.45200	6.15607	1.000	-28.6530	19.5790
		$67 . C 0$	-. 02000	2.84721	1.000	-11.16E1	11.12 El
		93.CJ	+12.44000	6.53131	1.000	-9.1940	34.0740
		$86 . C D$	-.726CC	6.72908	1.000	-23.2620	21.9070
		76.00	-.76400	5.45027	1.000	-22.1981	20.8691
		T\%.C0	13.69000	5.04312	.989	-5.126.	33.5:76
		80.00	12.43200	2.82378	. 000	1.3728	23.4851
		83.60	-37.08400	2.97433	. 000	-28.7088	-5.4192
		87.05	7.42000	6.45083	1.000	-14.0531	28.8931
		95.00	6.82000	2.72322	. 998	-3.9388	17.4788
		88.00	-5.858c0	6.50318	1.000	-27.2483	16.0323
		100.09	-12.9540C	2.78019	. 002	-23.82E3	-1.2627
		108.05	-2.25400	5.47535	1.000	-24.33E3	18.3273
		170.00	50.81800	5.03930	. 41 e	-3.1902	38.4222
		112.00	E.80800	2.70291	1.000	4.9712	$16.1 \overline{6} 72$
		1:5.0J	-12.930CC ${ }^{2}$	2.84958	.00e	-23.5544	-1.44EC
		119.05	2.550 CC	$5.8803^{3} 7$	1.000	-18.5752	24.5512
		127.05	7.84400	2.7805 e	. 927	-3.1917	18.7987

			Mean Difference			9E\% Confid	nee inserval
	All Concition	(J) Condition	(ib)	Sta. Ersor	Sig.	Lower Bound	Upper Bound
Tamhane	76.00	200	-11.10200	5.47330	1.000	-32.7108	10.3288
		10.cs	-.7560c	7.14767	1.000	-28.8317	27.2197
		14.60	3.88000	E.45552	1.000	-17.5918	25.3818
		17.00	-15.20000	5.65778	. 970	-37.2268	6.8268
		19.00	15.68600	e. 90821	1.000	-11.0447	43.0367
		21.00	-2.894cc	7.47924	1.050	-32.1589	28.3908
		29.60	6.32400	6.543E:	1.000	-18.4580	27.107 e
		30.60	18.5350 C	7.17642	. 285	-8.5004	47.6324
		34.00	-13.83200	6.59817	. 698	-35.8089	7.8448
		$42 . \mathrm{CO}$	-12.804c0	7.41344	1.000	-41.8206	18.4128
		$46 . \mathrm{CD}$	4.8000 C	E.48902	1.000	-19.30Eg	28.4168
		49.00	-78.03200	5.52021	. 400	-38.727e	3.8638
		51.00	1.128cc	$7.33 \overline{6} 14$	1.000	-27.5937	28.5497
		53.00	-3.8Sacc	7.77259	1.000	-34.1345	26.738 E
		8 BrO	. 74460	¢.53)e4	1.000	-20.8944	22.4824
		53.00	13.204 CC	7.2833.	1.000	-15.2247	41.8327
		8 coco	. 03500	7.43732	1.000	-28.0744	28.14 e 4
		8ढ. CD	. 88460	5. 45027	1.000	-20.8581	22.1901
		76.00	14.4800.0	e. 82278	1.000	-12.9376	41.5578
		80.00	13.19600	5.51952	1.000	-8.4976	34.9580
		83.ct	-12.30000	6.58502	. 851	-38.2698	5.6898
		B7.cI	8.15400	7.23250	1.000	-20.1243	36.4923
		85.00	7.53400	6.48875	1.000	-13.8177	28.0657
		Büct	-4.844C0	7.28472	1.000	-33.2782	23.5902
		100.00	-12.140cc	E.50241	1.000	-33.768E	9.4886
		108.05	-2.440cc	7.243 e 7	1.000	-30.7918	25.0118
		100.05	17.38000	e. 8190 e	. 288	-6.7005	44.4965
		112.03	8.3720c	5.45887	1.000	-16.0917	27.8357
		18 E 05	-11.836cc	E.5327e	1.000	-33.5780	0.9070
		168.03	3.3520 C	7.35452	1.000	-25.551E	32.2585
		127.05	8.808 cc	¢.5058e	1.000	-13.0373	30.2533

			Mean Difference			ge\% Confid	ice In:erval
	(1) Concition	(J) Condition	il-j	Std. Ersor	Sig.	Lower Bound	Upoer Sound
Tamhane	78.00	2.00	-2E.85206 ${ }^{2}$	E. 08506	. 000	-45.5676	-5.7385
		10.00	-15.21500	8.84222	1.000	-41.8975	11.5655
		14.60	-10.80000	5.048 ct	1.900	-30.4430	8.2430
		$17 . C 0$	-29.e80co	E.21302	.000	-50.1248	-8.1952
		19.00	1.53600	6.59179	1.000	-24.2643	27.33 e
		21.00	-17.34400	7.13600	1.060	-45.4834	$10.79 E 4$
		29.00	-8.13600	E. 14380	1.000	-29.3381	11.08 e 1
		31.60	5.07600	6.87444	1.060	-21.8318	31.8636
		$34 . \mathrm{CD}$	-28.39260,	5.17037	000	-48.6948	-8.0391
		42.00	-27.08400	7.11951	077	-64.8342	. 8082
		$4 \mathrm{E} . \mathrm{CD}$	-8.850.C	5.02560	1.000	-29.9807	10.3607
		4 cco	-32.48200°	5.118 ce	. 000	-52.5990	-12.3660
		59.00	-13.33200	7.04168	1.000	-40.893E	14.2296
		53.00	-18.1460c	7.48276	1.000	-47.4885	11.1905
		${ }^{\text {Bi. }} \mathrm{CD}$	-13.71000	E. 13080	.90c	-33.8582	8.4372
		83.60	-1.25600	8.863 C 4	1.000	-28.5118	25.9998
		80.00	-14.42460	7.14436	1.000	-42.3918	13.5438
		8 SCO	-13.88500	5.04318	.989	-33.517e	6.12Ee
		78.00	-14.48000	e. 82278	1.000	-41.557e	12.5376
		80.00	-1.29400	E.11794	1.000	-21.368t	18.3401
		B3.co	-30.780000	5.20252	.000	-61.18EC	-10.3350
		57.c0	-8.27600	e. 03096	1.000	-33.4056	20.8538
		85.c0	-6.87600	E.0831E	1.000	-26.7T30	13.0210
		28.00	-18.394C0	e.68451	. 944	-48.505	7.9573
		100.00	$-28.85000^{\prime \prime}$	E.03948	. 000	48.6342	-6.56E7
		108.05	-1e.830c0	6.84256	1.000	44.0752	10.2752
		110.00	2.82000	8. 80410	1.00 C	-22.2285	28.7685
		112.53	-2.05act	5.05226	1.000	-27.2438	11.7678
		116.00	-2e.296cc ${ }^{\prime}$	5.13222	.000	-48.4542	-8.1378
		118.05	-11.10500	7.05928	1.000	-28.8548	19.8438
		127.09	-5.85200	E. 10428	1.050	-25:804	14.2005

			Mesn Difference			95\% Confid	nee interval
	(1) Concition	(J) Condition	(1-J)	Std. Ersor	Sig.	Lower Sound	Upper Bound
Tamhane	80.03	2.00	-24.3.3860	2.85789	. 00.0	-35.6138	-13.1624
		10.00	-13.8520c	E.41313	. 985	-35.2439	7.3359
		14.00	-8.33600	2.93380	408	-20.428.	$1.75{ }^{\text {e }}$
		17.00	-28.39860°	3.11698	. 0 ce	-40.59eg	-18.1951
		19.00	2.80000	5.88221	1.000	-17.22e1	22.8261
		24.60	- 8.0 .03000	5.84671	.9E7	-38.07E4	8.95 ES
		29.00	-7.83200	2.88990	. 988	-18.6133	3.8583
		33.00	e. 34000	E.4507e	1.000	-15.1128	27.7920
		$34 . C D$	-27.12800*	3.04512	. 000	-36.0470	-15.2060
		$42 . \mathrm{CD}$	-25.89000'	E.78433	. 005	-48.4815	-3.1385
		$40 . \mathrm{CD}$	-8.39600	2.81688	. 8.74	-16.8528	3.0208
		49.60	-31.22500	2.85052	. Occ	-42.7998	-18.6502
		58.60	- 2.08500 CL	E.88715	1.000	-34.3461	10.2081
		53.60	-ie.8340C	e. 21944	. 888	-41.34EE	7.5779
		69.60	-12.45200	$2.877{ }^{2} 2$. 017	-24.10e4	-.797e
		83.60	.00EcC	E.58992	1.006	-21.3844	21.8004
		$36 . C 0$	- 3.18000	E.7e5cc	1.000	-36.8428	8.3228
		88.00	-12.43200°	2.82378	.oce	-23.405 ${ }^{\text {a }}$	-1.3788
		76.60	-13.19500	E.51952	1.000	-34.858C	8.4970
		7 Co .60	1.28400	5.11794	1.000	-18.5401	21.3681
		83.00	-28.49600'	3.03940	. 000	-41.8278	-17.3541
		97.00	-6.01200	E.52e97	1.000	-20.7465	18.7215
		$95 . \mathrm{CD}$	-5.81200	2.85928	1.000	-16.8037	5.5797
		18.CD	. 18.04000	6.57175	. 483	-38.8367	3.8597
		100.0]	-2E.336CC	2.82314	.0cc	-3e.7772	-13.9948
		108.00	-15.83600	6.54428	.920	-37.4270	0.1500
		110.00	4.18400	5.11411	1.000	-15.9050	24.2730
		132.05	-e.924C0	2.8399 e	1.000	-17.8402	4.2922
		115.00	-25.03260	2.87988	.0cc	-39.89E3	-13.3507
		119.03	- 8.84460	E.72708	1.000	-32.3582	12.6702
		127.00	$-4.550 \mathrm{CC}$	2.83152	1.000	-19.0520	8.93 ec

			Mean Difference			95\% Convic	nee interval
	(1) Conatition	(J) Condition	[1-J!	Std. Ersor	Sig.	Lower Bound	Upper Bound
Tamhane	83.05	2.00	5.10300	3.01633	1.000	-0.7001	18.8181
		10.00	15.54400	E.49609	. 915	-8.05C4	37.1384
		$14 . \mathrm{CD}$	20.16000	2.85384	. 000	8.4779	31.8421
		17.60	1.10000	3.254 CO	1.000	-11.53E2	13.8362
		19.60	32.28500°	E.18311	.000	11.9478	E2.8442
		23.60	13.41600	5.82288	1.000	-¢.8580	36.8916
		2 Cl [0	21.82400°	3.14193	. 000	0.3281	33.8219
		31.60	$35.8 .3600^{\circ}$	E.53812	.000	14.0832	67.5888
		34.60	2.35800	3.13523	1.000	-10.0981	14.9351
		42.00	3.89600	E. 8.395	1.000	-18.2484	28.6414
		$4 \overline{5 . C D}$	21.10000	3.08288	. 000	8.1500	33.9884
		49.00	-1.73200	3.10003	1.000	-13.8687	10.4047
		51.00	77.42800	5.74305	. 728	-5.1380	38.2940
		53.08	12.81200	8.28522	1.000	-12.1125	37.3365
		6i.CD	:17.044c0 ${ }^{\circ}$	3.12076	. 000	4.8287	22.2592
		83.00	29.50400°	E.84774	. 000	7.3175	51.8505
		88.60	:8.336ca	5.88983	. 241	- 0.7282	28.4012
		88.60	17.0540c ${ }^{\circ}$	2.87433	.000	5.4182	28.7088
		78.60	18.30000	E.50ec3	. 561	-5.63¢8	28.2888
		78.05	30.76acc	E. 202 E 2	. 000	10.3350	51.18EC
		80.00	28.486сС'	3.02940	. 000	17.3541	41.8278
		87.c0	24.48400°	5.85613	. 008	2.4543	48.5137
		95.co	$23.854 C^{\circ}$	3.00607	.0co	12.1080	35.8600
		8 BE .60	11.45300	E.849E4	1.000	-10.7378	33.6498
		100.00	4.18000	3.05883	1.000	-7.852e	$10.172 e^{\text {e }}$
		108.00	83.850c0	5.82248	. 8.6	-8.22e4	35.844^{4}
		110.00	33.83000°	6.18876	.000	13.2689	E4.0901
		112.00	22.87260 ${ }^{\circ}$	2.98970	. 000	10.9675	34.3785
		11 1.00	4.46400	3.12293	1.000	-7.7567	18.8877
		136.05	16.85200	E. 80278	. 325	-3.1479	42.4518
		127.00	24.83500°	3.97890	. 000	12.8643	38.8517

	(1) Concition		Mean Difference		Sig.	90\% Confidence Interval	
		(J) Condition	- ${ }^{\text {a }}$ - 1)	Std. Error		Lower Sound	Upder Bound
Tamhane	87.00	2.00	-19.3780CC	5.48302	208	-40.83Ee	2.1636
		10.60	-2.8400c	7.15548	1.000	-36.8487	18.08 c 7
		$14 . C D$	-4.324cc	5.46587	1.000	-25.8168	17.1588
		17.60	-23.384C0	E.81787	. 020	-45.45Ce	-1.3574
		19.00	7.812CC	e. 81638	1.000	-18.2808	34.8848
		21.60	-11.086cc	7.4508 C	1.000	-40.3724	18.2384
		29.00	-2.85000	5.5537 C	1.000	-24.803	18.8538
		$3 \mathrm{Sc0}$	11.352cc	7.18028	1.000	-18.7752	28.4782
		34.00	-22.118.c ${ }^{\text {d }}$	0.57631	. 044	-44.0328	-.1981
		42.60	-20.78800	7.42107	. 928	-48.5340	8.2586
		48.50	-3.384CC	6.50938	1.000	-25.0408	18.2728
		48.00	-2e.21000	5.53044	. 002	-47.8521	4.4788
		51.60	-7.05600	7.34524	1.000	-35.8079	21.8959
		53.00	-: 1.8372 C	7.75988	1.000	-42.3288	18.5828
		81.00	-7.440cc	5.54175	1.000	-28.2188	14.3388
		83.00	E.b200c	7.27108	1.000	-23.4381	23.4781
		80.CD	-8.14000	7.44482	1.000	-37.2581	20.9821
		88.50	-7.42000	E.480e3	1.000	-28.8931	14.0531
		75.00	-2.154CC	7.232ธe	1.000	-36.4923	20.1243
		$76 . C 0$	e. 27800	e. 83096	1.000	-20.5536	33.4050
		B0.CD	5.0120 C	5.52975	1.000	-19.7215	28.7455
		B3.c0	-24.43400	5.80513	. 008	-46.5137	-2.4543
		25.00	-.85000	E.47908	1.000	-22.1425	20.8425
		B8.c0	-13.02800	7.27250	1.000	-41.4926	15.436 e
		100.05	-20.32400	E. 512 6	. 124	-41.2931	1.3451
		108.00	- 0.82400	7.25148	1.000	-36.00e3	17.7583
		110.05	8.1260 C	6.82613	1.000	-17.822e	38.3146
		112.03	-1.8120c	5.48902	1.000	-23.31ee	18.592 e
		115.05	-20.02000	5.54267	. 180	-41.5034	1.7634
		138.05	-4.832C0	7.32217	1.000	-33.76E4	24.1014
		127.00	. 424 CO	5.51712	1.000	-21.2618	22.1098
127.00							
Difference \quad 9E\% Confidence Interval							
	(li Concition	fJ) Condition	- ${ }_{\text {a }}$	Std. Ersor	Sig.	Lower Bound	Upder Sound
Tamhane	95.00	2.00	- 0 0.7760.	2.76903	. 000	-20.6140	-7.8380
		10.00	-2.3400c	5.38540	1.000	-29.4367	$12.75{ }^{2} 7$
		14.00	-3.724CC	2.73371	1.000	-14.4238	6.97E8
		17.C0	-22.754c0	3.02619	.000	-34.9312	-10.23es
		19.00	2.412cc	5.04320	1.000	-11.40e:	28.2301
		2 T .60	- 0.4 .458 CO	5.80022	1.000	-33.2633	12.3473
		29.00	-2.280cc	2.80534	1.000	-13.8324	0.1124
		3 Sco	11.9520c	E.40742	1.000	-6.3070	33.2010
		34.60	-21.51б6 ${ }^{\circ}$	2.65211	.0cc	-33.0721	- 0.9598
		42.00	-20.18800	5.71574	. 210	-42.8587	2.2907
		48.00	-2.784CC	2.819 e	1.000	-13.8203	8.2523
		49.00	-25.81606	2.860 e3	.0ce	-38.8128	-14.4181
		$51 . \mathrm{CO}$	-8.456c0	6.81772	1.000	-28.5470	15.8350
		53.00	-11.27200	e. 17443	1.000	-35.5550	13.0210
		87.C0	-8.840cc	2.89244	1.000	-18.1225	4.4426
		83.00	E.82000	E.51922	1.000	-16.0829	27.3229
		86.60	-7.54ecc	5.74607	1.000	-30.1480	16.0530
		86.CD	-6.82000	2.72322	. 998	-17.4788	3.8388
		75.00	-7.5.54C0	5.48675	1.000	-28.0857	13.8177
		76.00	e.87ecc	5.0631 E	1.000	-13.0210	28.7730
		80.00	5.81200	2.85928	1.000	-5.5767	16.8037
		53.00	-23.854CC'	3.05807	. 000	-35.60ิC0	-12.1090
		37.00	.800c0	E.4790e	1.000	-20.342E	22.1425
		98.c0	- 12.428 CC	E.52147	1.000	-34. 1382	8.2622
		100.00	-39.734C0 ${ }^{2}$	2.82612	. 000	-30.705.7	-8.8623
		108.09	-10.024c0	5.48375	1.000	-31.524e	11.5788
		110.00	9.73ncc	5.05928	1.000	-10.0857	28.6777
		112.05	-1.2120c	2.74000	1.000	-11.9384	8.5124
		115.00	- 98.42000°	2.85478	. 0 co	-20.7417	-8. 1283
		119.05	-4.23200	6.87617	1.00 C	-28.5621	18.0981
		127.00	1.024 CC	2.83478	1.000	-10.071e	12.11 Ge

			Me.an			90\% Confid	ce lmaterval
	(1) Concition	(J) Condition	(1-J)	Sta. Ersor	Sig.	Lower Eound	Upper Bound
Tamhane	08.00	2.00	-6.348C0	$5.525 ¢ 7$	1.000	-28.0752	15.3762
		10.60	4.096cc	7.15798	1.000	-24.0421	32.2221
		14.60	8.70400	6.5053e	1.000	-12.85eg	30.3548
		17.00	-10.35600	E.65921	1.000	-32.55e2	11.8742
		19.00	20.84000	e. 85002	. 757	-8.3848	48.0448
		29.60	1.88000	7.51787	1.050	-27.4057	31.3857
		29.00	1C. 1880 C	E.58552	1.000	-11.8214	32.1574
		$31 . C 0$	24.39000	7.2186 e	. 324	-3.8740	52.6340
		$34 . \mathrm{CD}$	- 4.08 coc	E.81995	1.000	-31.1687	12.8937
		42.60	-7.7800c	7.45242	1.000	-28.9282	$21.40{ }^{2} 2$
		$45 . \mathrm{CD}$	6.844c0	E.551E1	1.060	-12.1763	31.4573
		49.00	- 13.18300	E. 57244	1.000	-35.0902	8.7142
		57.00	6. 37200	7.37751	1.000	-22.8037	34.3477
		53.00	t.156cc	7.93977	1.000	-29.41E4	31.7274
		8.co	E.5sece	E.553ee	1.000	-18.35e8	27.532 e
		83.01	18.0460.	7.30368	. 989	-10.53e3	46.8323
		86.00	4.8500 C	7.47616	1.000	-24.3622	34.1422
		85.00	E.85ecc	E.5031e	1.000	-18.5323	27.2483
		78.80	4.84400	7.28472	1.000	-23.59C2	33.2782
		78.60	39.30400	8.85451	. 944	-7.9573	48.5653
		50.60	98.0400c	6.57175	. 483	-3.8587	39.8387
		53.00	-11.4500C	E.849E4	1.000	-33.5488	10.737e
		87.60	12.02800	7.2725 C	1.000	-15.43ee	41.4928
		85.c]	12.42ecc	5.52947	1.000	-8.2622	34.1382
		100.05	-7.226cc	5.5544 C	1.000	-28.1317	14.5387
		108.00	2.4040 C	7.28355	1.000	-28.1039	35.8119
		170.00	22.22450	e.88369	. 525	-5.02e4	48.4744
		112.00	11.216 CC	E.51148	1.00 C	-10.4588	32.8884
		115.05	-6.80200	6.53487	1.000	-28.8412	14.8672
		119.05	8.1865 C	7.423 E 4	1.000	-20.8504	37.2524
		127.05	13.45200	E.55921	1.000	-8.40c.	35.3044

			Mean			Gen Confic	ce Intervat
	(li) Concition	(J) Condition	i- J -	Sta. Ersor	Siq.	Lower Sound	Upper Bound
Tamhane	\% 60.00	2.00	. 848 C0	2.83481	1.000	-10.1480	12.0440
		10.00	01.33400	6.400e9	1.000	-0.5420	32.8100
		14.00	38.3000c ${ }^{\circ}$	2.83042	. 000	5.0387	28.9613
		17.00	-3.030c0	3.09658	1.000	-15.1424	8.0224
		19.00	28.13500°	E.079e8	.000	8.130 .1	48.0918
		21.60	8.25500	6.832Ee	1.000	-13.5788	32.1906
		29.00	17.45460 ${ }^{\circ}$	2.85820	. 000	$5.54 \mathrm{e2}$	29.0618
		$3 \mathrm{3} . \mathrm{CD}$	31.87500°	5.44145	. 000	10.2687	53.0623
		34.00	-1.79200	3.01400	1.000	-13.5894	10.0054
		42.00	-.48400	E.74794	1.000	-23.0839	22.1359
		45.00	18.84000°	2.85438	. 000	5.6505	28.2285
		49.00	-6.99200	2.82445	1.000	-17.3384	5.5544
		59.00	j3.28800	E.8504E	1.000	-8.04e3	35.4823
		53.00	8.45200	e. 25420	1.000	-15.9528	32.85 ee
		$81 . \mathrm{CD}$	12.834C0 ${ }^{\text {2 }}$	2.84578	. 007	1.3541	24.4139
		83.00	$25.344 \mathrm{CO}^{\circ}$	E.552ge	. 004	3.5155	47.172 E
		$8 \mathrm{~B} . \mathrm{CD}$	$\square 2.17 \mathrm{aCC}$	6.77870	1.000	-10.5455	34.3975
		85.00	12.854CO'	2.72018	. 002	1.9627	23.32 E 3
		76.00	12.14000	E.53241	1.000	-9.4885	33.7585
		76.00	22.8 race	E.08948	.0ce	0.5667	48.6343
		30.c0	$2 \mathrm{E} .33 \mathrm{~s} \mathrm{c}^{\circ}$	2.92314	. 000	13.3948	38.5772
		53.C0	-4.18000	3.08883	1.000	-16.172e	7.5528
		$87 . \mathrm{co}$	20.32400	E.512e7	. 124	-1.34E1	41.8931
		85.60	$18.724 \mathrm{C}^{\circ}$	2.82512	. 000	8.8523	30.780 .7
		P\%.C0	7.29300	E.55480	1.000	-14.5397	28.1317
		108.00	8.70000	E.52725	1.000	-12.0268	31.4288
		110.00	29.52000°	E.025e4	. 000	9.5009	48.5381
		112.00	18.5120c	2.906 Ee	. 000	7.5268	28.4972
		115.05	. 35400	2.84808	1.000	-11.2348	11.8428
		118.09	15.4.2200	E.710E9	. 970	-8.930 1	37.9441
		127.03	20.740.00	2.88917	. 000	8.4000	32.0554

			Mean Difference			95\% Confid	ce Interval
	(1) Concition	(f) Condition	(3)-1)	Std. Ersor	Sig.	Lower Sound	Upser Bound
Tamhàne	T08.00	2.00	-8.75200	5.48228	1.000	-30.369E	12.8858
		10.00	1.85460	7.185072	1.000	-28.3507	29.7347
		14.00	e.3000c	5.48058	1.000	-15.2510	27.3510
		17.00	-12.76000	5.83217	1.000	-34.8832	6.3832
		19.00	18.43800	e. 2.2302	. 982	-8.8625	45.5545
		21.00	-.4440C	7.48764	1.000	-28.7903	28.8023
		29.00	7.78460	5.58617	1.000	-14.1172	28.6452
		$3 \mathrm{Ti.co}$	21.87600	7.18748	.684	-8.198 1	E0.1471
		34.00	-11.48200	5.58272	1.000	-33.4658	10.4519
		42.00	-16.184CC	7.43191	1.000	-26.2530	18.8260
		$45 . \mathrm{CD}$	7.2400 C	E.5236E	1.000	-14.4742	28.2543
		49.60	- 3.5 .50200	5.54487	.926	-37.385e	6.2018
		5 5 .60	3.586C0	7.35078	1.000	-25.22e7	32.3627
		53.00	-1.24800	7.70020	1.0 CO	-31.7431	20.2471
		83. 60	3.13460	E.5562e	1.000	-18.6522	25.0202
		83.60	36.84400	7.2921 E	1.000	-12.5584	44.1484
		86.50	2.47600	7.45572	1.000	-28.7083	31.6583
		86.50	3.30400	5.47535	1.000	-18.3273	24.7353
		$76 . C 0$	2.44000	7.24307	1.ece	-25.0118	30.7918
		78.60	18.80000	e. 042 ES	1.000	-10.2752	44.0752
		50.60	16.83600	E.54428	. 220	-6.155c	37.4270
		33.60	-13.8800C	5.8224 e	. 988	-35.94e4	8.2224
		97.00	10.824 CO	7.25148	1.000	-17.7583	36.00 e
		8.5.c0	10.02400	5.48375	1.000	-11.57ee	31.6246
		88.60	-2.40460	7.28365	1.000	-30.0118	28.1036
		100.35	-8.750c0	E.52725	1.000	-21.4288	12.0288
		110.00	19.82000	8.83972	. 682	-7.3442	48.2642
		112.05	8.812C0	E.48372	1.000	-12.7508	30.3748
		116.05	-9.386cc	5.55747	1.000	-31.23e8	12.444e
		118.03	E.722c0	7.4030 E	1.000	-23.1836	34.7679
		127.0	11.04800	6.53je9	1.000	-10.6956	32.7915

			Mean Difference			95\% Confio	cee interval
	(il) Concition	(J) Condition	id-Ji	Std. Ersor	Sig.	Lower Bound	Upper Bound
Tamhane	110.00	2.00	-28.672C6	5.18420	. 000	-48.4722	-8.8718
		10.00	-18.1360c	8.83938	. 924	-4.8093	8.8343
		14.00	-13.52000	5.04497	. 979	-33.347e	8.3078
		$17 . \mathrm{CD}$	-32.580C0 ${ }^{\circ}$	5.20928	.000	-53.030c	-12.1300
		19.00	-1.35400	e. 53582	1.000	-27.1727	24.4047
		27.00	-20.28400	7.18527	. 917	-48.3928	7.8540
		29.00	-12.05500	5.14000	1.000	-32.2431	8.1311
		31.00	2.15800	e. 87 1EE	1.000	-24.7408	28.0528
		34.00	-31.31200 ${ }^{\circ}$	E.1365e	.0cc	-51.5959	-11.3241
		42.00	-29.89400'	7.11678	. 015	-67.8434	-2.1248
		46.00	- 32.59000	5.08205	.988	-32.585E	7.4265
		49.00	-36.41200'	E.1148e	.0c0	-66.5038	-15.3202
		5 5.co	-10.2520c	7.03528	1.000	-43.8031	11.2981
		53.60	-21.0880c	7.48014	. 921	- 50.3983	8.2603
		81.00	-18.8350c	5.12768	. 473	-36.7741	3.5021
		33.60	4.17800	8.88023	1.000	-31.420e	23.0688
		80.cd	-17.34400	7.14102	1.000	-45.3012	10.8132
		8.CD	- 18.81600	5.03930	. 416	-38.4222	3.1902
		75.60	$-17.380 \mathrm{cc}$	e. 8198 e	. 998	-44.46es	8.7005
		75.00	-2.92000	e. 8.5410	1.000	-29.7685	22.8285
		50.cd	-4.15400	5.11411	1.060	-24.2730	15.2050
		83.co	-33.8500c ${ }^{\text {- }}$	5.19874	. 000	- 64.0901	-13.2689
		87.00	-9.126cc	e. 82.613	1.000	-38.3148	17.922 e
		85.00	-¢.78600	6. 55928	1.060	-28.8777	10.0857
		-6. 00	-22.22400	8.959e9	. 525	-48.4744	5.02 e 4
		100.00	-29.52000°	E. 0.55 C 4	.0c0	-49.539	-8.50ce
		108.00	-18.8200c	e. 83973	. 882	-48.8ढ̈42	7.3442
		112.05	-11.03800		1.050	-30.8425	8.832 E
		115.05	-29.21600'	6.12541	. 000	-48.35et	-9.072e
		198.05	-14.02800	7.05682	1.000	-41.7690	13.7130
		127.00	-8.772CC	5.10045	1.000	-28.3093	11.2653

			Mean			9E\% Confic	nce Interval
	(i) Comition	(J) Condition	(11-ل)	Std. Error	Sig.	Lower Bound	Upper Bound
Tamhane	112.00	2.00	-17.53400'	2.749 Ce	.000	-28.3239	-8.3041
		10.08	-7.128C0	E.35612	1.000	-28.1380	13.8300
		14.60	-2.51200	2.71348	1.060	-13.1320	8.1086
		17.00	-21.E7200'	3.05792	. 000	-33.3482	-8.7958
		19.0	8.82400	5.03227	1.000	-10.1528	28.4008
		27.60	-6.250.c	E.78!32	1.000	-32.035e	13.523 e
		29.00	-1.040000	2.95631	1.000	-12.3482	10.2502
		34.60	13.1840 C	6.39722	1.000	-8.056e	34.3848
		34.60	-20.354C0	2.83339	. 0.0	-31.7672	-8.820e
		42.00	-18.97600	5.70008	. 387	41.4184	$3.46 \mathrm{e} \cdot 4$
		45.00	$-1.5720 \mathrm{C}$	2.80004	1.000	-12.5317	8.3077
		49.00	-24.40400'	2.84 ¢30	. 000	-35.5256	-13.282E
		51.00	-E.244C0	E.80781	1000	-27.2981	16.8301
		53.00	-30.35000	e.16550	1.000	-34.3185	14.1985
		Bi.co	-5.82act	2.88328	1.000	-18.8357	5.5797
		83.60	e.83200	E.50983	1.000	-14.9333	28.4973
		8 BCO	-e. 33500	5.73707	1.000	-28.2010	18.2290
		86.00	-6.89acc	2.70291	1.000	-18.1672	4.8712
		75.00	-8.3720c	5.45687	1.000	-27.9357	15.0917
		76.00	8.08800	E. 05220	1.000	-11.7678	27.8438
		80.60	e.824CC	2.83986	1.000	- 4.2922	17.8402
		83.00	-22.87200	2.05970	. 000	-34.37e6	-10.067E
		57.00	1.8120c	5.45902	1.000	-18.892e	23.3188
		85.60	1.21200	2.74000	1.000	-8.5124	11.93 e 4
		88.60	-11.21800	5.51148	1.000	-32.8886	10.458 e
		100.00	-12.51200'	2.805\%e	. 050	-28.4972	-7.52e8
		108.50	-9.9120c	E.45372	1.000	-30.3749	12.7508
		110.05	71.03 ECC	E.04838	1.000	-8.5325	$30.848{ }^{\text {c }}$
		1:3.00	-18.2000c	2.885 e 2	. 000	-28.4249	-8.0911
		198.03	-3.02006	E.8584e	1.000	-25.3138	18.273 e
		127.03	$2.23 \overline{\mathrm{C}} \mathrm{C}$	2.91528	1.000	-8.7024	$13.25 E 4$

			Mean Difference			25\% Confid	cee interval
	(1) Concition	(J) Condition	(1-j)	Stal Error	Sig.	Lower Eound	Upper Sound
Tamhane	115.00	200	. 84400	2.82336	1.000	-10.8813	11.8683
		10.60	11.08000	E.43182	1.000	-10.2528	32.4228
		14.00		$2.859{ }^{1}$.000	4.5025	28.5895
		17.60	-3.354CC	3.14038	1.000	-15.6562	8.8282
		19.60	27.83200 ${ }^{\circ}$	5.11254	.000	7.7510	47.8924
		21.60	8.85200	5.85121	1.000	-14.0904	31.8944
		29.60	$17.13000{ }^{\circ}$	3.02410	. DCO	5.3238	28.896.4
		31.00	31.37200°	6.47215	. 000	8.8888	62.87E2
		34.60	-2.09600	3.05907	1.000	-14.1085	9.9885
		$42 . \mathrm{co}$	-.78500	5.7770 t	1.000	-23.4773	21.8413
		46.60	Pe.83800	2.84187	.000	5.1213	28.1507
		45.00	-e. 18600	2.83117	1.000	-17.8543	5.4723
		54.c0	:2.984C0	5.85005	1.000	-8.3517	35.2887
		53.60	8.140 cc	8.23120	1.000	-10.3581	32.8541
		8.cD	\$2.53000 ${ }^{3}$	3.03210	. 012	. 5297	24.3303
		83.00	25.04000°	E.68305	. 005	3.9981	46.8618
		86.60	\$1.87200	E.807e 1	1.000	-10.9584	34.7024
		88.60	- 2.80000°	2.84958	.00e	1.44Ee	23.7544
		75.60	81.83600	E.53278	1.000	-9.9070	33.5790
		78.60	2е. 2 2вcc ${ }^{\circ}$	5.13222	. 000	8.1378	48.4542
		80.60	$2 \mathrm{E.0320} 0^{\circ}$	2.87989	.000	13.3887	38.8953
		33.60	-4.48400	3.12283	1.000	-18.6677	7.7597
		37.ct	20.02000	5.64287	.sec	-1.7334	41.8034
		85.60	18.42000'	2.85478	. 000	8.1283	30.7017
		88.60	e.82200	5.55487	1.000	-14.9572	28.9412
		100.03	-. 30400	2.84008	1.000	-11.5429	11.2348
		108.03	ع.396c0	5.55747	1.000	-12.4448	31.23 eg
		10.05	28.21500	E. 12641	. 000	8.0726	4 E .3581
		132.03	$12.205 \mathrm{cc} 0^{2}$	2.85502	. 000	8.8911	28.4249
		198.03	i5.19000	E.73984	. 888	-7.3743	37.7503
		127.00	20.44460.	2.85038	. 000	8.872 e	32.35 E4

	(i) Concition		Mean Difference (1-J)	Sta. Error	Sig.	95\% Confidence Interval	
		(J) Condition				Lower Eound	Upder Bound
Tamhane	119.00	2.00	-14.54400	5.83255	. 9.98	$-38.89 \mathrm{CB}$	7.8028
		10.60	-4.10500	7.30804	1.000	-32.71e6	24.5008
		14.00	.50500	5.88542	1.000	-21.7742	22.7902
		17.00	-18.55200	E.81220	538	-41.3875	4.2635
		19.00	12.84400	7.07515	1.000	-15.0523	40.3403
		21.60	-e.2300c	7.83370	1.000	-38.1:46	23.6425
		29.00	1.97200	6.75020	1.000	-20.8294	24.5734
		31.00	te. 1.8400	7.33521	1.000	-12.5424	44.0854
		34.00	-35.25460	5.77398	. 771	-38.87E1	5.4071
		42.CD	-15856C0	7.55926	1.000	-45.5821	13.5701
		$4 \mathrm{CO} . \mathrm{CD}$	1.440C0	5.70729	1.000	-20.0920	23.838 c
		49.00	-21.334CO	E.72774	. 105	-43.2007	1.1327
		51.00	-2.22400	7.48551	1.000	-31.561E	27.1135
		53.00	-7.04000	7.82133	1.000	-28.0463	23.88 ea
		83.60	-2.95600	6.738ее	1.000	-25.1059	18.8489
		83.00	8.85200	7.42227	1.000	-19.1980	38.8030
		$6 \mathrm{6} . \mathrm{CD}$	-3.31300	7.592e3	1.000	-33.033e	2 e .401 e
		86.CD	-2.598C0	E.86037	1.000	-24.9512	18.6752
		$7 \overline{\text { \% }}$ ¢0	-3.35200	7.38452	1.000	-32.25EE	25.5515
		75.00	11.10600	7.08938	1.000	-18.6438	38.9588
		S0.CD	9.84400	6.72708	1.000	-12.8702	32.3582
		83.60	-18.85200	5.80278	. 325	-42.4518	3.1478
		37.C0	4.83200	7.39217	1.000	-24.1014	33.7654
		95.00	4.23200	5.87617	1.000	-18.0981	26.5621
		B6.CD	-2. 126000	7.423 e4	1.000	-27.2524	20.8604
		100.30	-15.4820C	5.71058	. 970	-27.844t	6.8501
		104.05	-5.7220C	7.4036e	1.000	-34.7676	23.1839
		100.00	14.52000	7.0562	1.000	-13.7130	41.7680
		112.00	3.02000	E. 888 ¢\%4e	1.000	-18.273e	25.313 e
		116.05	-35.18800	6.73924	.98e	-37.7503	7.3743
		127.00	5.2550C	5.71498	1.000	-17.2122	27.7242
Difference \quad 95\% Confidence Interval							
	(1) Concition	(u) Condition	(1-)	Sta. Erter	Sig.	Lower Bound	Upoer Bound
Tamhane	127.00	2.00	${ }^{-19.850000}$	2.84365	. 000	-30.8298	-8.8702
		10.00	- 8.38400	5.40523	1.000	-30.5072	11.8792
		14.CD	-4.748500	2.89916	1.00 C	-15.7435	0.2475
		17.60	-23.8050.0	2.09452	. 000	-3E.8213	-11.6947
		19.60	7.35800	¢.03460	1.000	-12.5582	27.3622
		21.60	- 71.48200	E. 236878	1.000	-24.4424	11.4584
		29.00	-3.28400	2.87544	1.000	-14.8340	8.3680
		37.60	t0.82600	5.44586	1.000	-10.47e3	32.3323
		34.00	-22.E40c\%	2.02212	. 000	-24.3581	-10.7108
		42.60	-21.21200	5.75221	. 124	-43.3279	1.4038
		48.00	-3.80500	2.8829 e	1.000	-16.1307	7.5147
		49.60	-2e.8400. ${ }^{\text {c }}$	2.83282	. 000	-38.1181	-15.1609
		53.60	-7.48000	E. 85482	1.000	-28.710e	14.7500
		53.00	-12.29000	e. 20.21	1.000	-28.7157	12.1237
		68.60	-7.854c0	2.85408	. 982	-18.4284	3.5984
		83.00	4.59600	5.55738	1.000	-17.2481	28.4411
		$60 . C 0$	-8.57200	6.78284	1.000	-31.3085	14.1655
		88.60	-7.84400	2.73 cce	. 927	-18.7967	3.1117
		78.60	-8.80600	E.5058e	1.000	-20.2533	13.0373
		76.00	5.85200	E. 10428	1.00 C	-14.2005	25.0045
		80.00	$4.58 \overline{C L C}$	2.931 E 2	1.000	-8.8880	18.0820
		93.60	-24.8350 0°	3.0752 C	. 000	-36.2517	-12.3643
		87.00	- 424001	5.51712	1.000	-22.1088	21.2618
		25.00	$-1.024 \mathrm{CO}$	2.83478	1.000	-12.11Ee	10.9718
		$28 . \mathrm{CD}$	-33.45200	5.65921	1.000	-35.3044	8.4004
		100.00	-20.7480. ${ }^{\text {d }}$	2.80917	.0ca	-32.0964	-9.40ce
		108.00	-11.04600	5.53518	1.000	-32.7915	10.8955
		110.00	8.77200	E. 10045	1.0 cc	-11.2553	28.8093
		112.00	-2.23600	2.81528	1.00 c	-13.2554	8.7634
		115.00	-20.444C0	2.85838	. OCC	-32.0154	-8.8726
		19.00	-5.25600	6.71488	1.000	-27.7242	17.2122

J. TAMHANE'S T2 TEST FOR LEVEL 3 WITHOUT UPPER VALUES (EFFORT)

$\frac{19}{10.50}$ ardition	(J) Conotion	mean Drfference (i-d)	S:d Emor	3.9	85\%\% Confidence interval	
					Lower Bound	Upper Brund
	14.00	4.81500	5.36291	i. 000	-15.2209	24.8 E®3
to.	15.50	19.76200	8. 27849	683	-9.6es	42.4240
	21.00	-2.72203	7.46473	:.023	-306145	25.7585
	26.00	8.08903	¢.44258	1.033	-14.4861	25 e 481
	21.00	20.26203	7.16779	709	-9.4482	476222
	$4{ }^{4} .00$	5.55 ecs	5.36731	3 cos	-14.8482	25.5002
	61.00	1.38403	7.28219	:.c03	-254e49	232328
	¢2.00	-2.9223	7.70082	$1{ }^{1003}$	-31627	25.0737
	e 1.00	1.5c00	5.43037	1.603	-10.624	22.6247
	E3.00	13.96009	7.3 e597	i.c00	-131035	41.6235
	ee.oo	.78203	$7.3 \mathrm{C239}$:.cos	-26.6347	25¢189
	e8.00	1.52003	¢.347\% ${ }^{\text {c }}$:-603	-15.7634	21.7434
	72.00	.78009	7.4885	1.003	-26.929	27.429
	72.00	15.21003	9.64222	. 603	-196515	406835
	80.00	13.96209	5.41813	. 0×5	-6:2e0	34.4220
	87.00	8.58093	7.1643	1.003	-15.0064	35.8864
	85.00	9.34000	5.36e40	i.coj	-19.6819	288219
	¢2.00	4.08200	7.18783	1 cog	-31.158a	22.8603
	108000	-1.88409	7.ee72	- 009	-25.427	253047
	110.00	18.7320]	0.63630	88\%	$\rightarrow .8289$	¢3.8627
	112.00	7.12200	5.3E13	1000	-13.12es	272235
	188.00	4.10850	7.30984	1.003	-234174	31.e334
	127.00	0.38400	5.46523	i.cos	-110861	22.7871
14.00	19.50	\rightarrow-31000	5.36291	1.000	-24.e56s	15.2269
	18.00	12.13 eno	5.02885	692	- 0.8742	31.1462
	23.00	-0.74400	5.7e335	1.603	-29.e423	151543
	29.00	1.44400	2.88035	1.009	-8880	12.2123
	24.00	15.87 cco	¢.38494	eat	-4.7232	39.8752
	4.50	94680	2.75383	1.000	-2.esis	11.4818
	St.00	-2.72200	5.06484	$1 . \mathrm{CD} 3$	-23.8330	19.4889
	63.00	-7.54280	6. 18271	:.c00	-396704	157744
	c:00	-3.11ess	2.65724	1.600	-13.8767	7e447
	e. 00	9.34450	6.50es 1	: Cos	-114838	33.1710
	عe.00	-3.32480	5.79487	-000	-25.5184	17 8e84
	ea.so	-3.06 eso	2.86 e54	$\bigcirc \cdot 009$	-13.2697	7.6587
	7.00	-3.0еcs	¢.4E552	1.009	-244831	19.7731
	72.00	10.30 ccs	5.04885	-. 600	-64893	2จ.евя
	8e.00	9.33eed	2.63360	253	-1.2380	20 cosg
	87.00	4.32400	5.46587	$\pm .609$	-182484	24.6694
	6¢.00	3.72450	2.72271	:c00	-0.5707	14.6187
	98.00	-8.70420	5.56838	$\therefore . \cos$	-20.5280	12.1300
	108.00	-6.36003	5.4ecs9	: 609	-27.0264	14.4284
	115.00	13.52603	5.04487	293	-5.EE 15	32.5015
	112.09	2.51203	2.71248	: 603	-9.7685	12.7385
	116.00	-.50809	5.38542	:cos	-216294	23.6234
	127.00	4.74808	2.00918	1009	-58312	153272

al: Cordition	(j) Condrion	Mèn Difference (1.J)\qquad	3:i. Emor	3 F	65\% Tontidente interval	
					Lower Sound	$L_{\text {pper }}$ Bcund
18.50	10.50	-16.7E209	${ }^{6.22743}$	682	424840	8.6800
	14.00	-12.13090	5.62885	¢88	-31.1482	6.2742
	27.00	-18.68090	7.17388	612	25.8015	59450
	29.00	-13.87200	E. 12417	т.600	-30.0340	s.e80
	37.00	354.093	B. 65678	t. 000	-222839	22.3738
	48.00	-11.i6eg	5.07 e93	:.c00	-303783	76883
	51.00	-14. 1.808	$7.62 \mathrm{ez3}$	-009	41.3235	11.8685
	E3.00	-18.88403	7.47823	912	478 egs	3.4829
	e: .00	-15.26202	5.1122	¢9\%	-34.5e29	4.6 ¢88
	e3.00	-2.79209	8.64855	1.609	-256e11	23.3771
	ee.so	-15.9008J	7.13024	683	+28157	10.6557
	e8.00	-15.23203	6.02315	E15	-34.2214	37674
	78.00	-15.96e0]	e.ece21	697	42.6139	13.6289
	72.00	-1.52eca	0.56179	1.030	-28.2E95	23.2875
	E0.00	$-2.60 \mathrm{CDS}$	5.08829	8.693	-22.0e31	19.4834
	87.00	-7.6120]	6.91e3a	-009	-35.8697	18.2297
	¢5.00	-8.4128	5.0422 J	9.603	-27.4725	$1 \mathrm{eces5}$
	$\$ 8.00$	$-28.64 \mathrm{CDJ}$	0.96602	E45	47.6147	5.3347
	109.00	-18.43eco	0.92ev:	882	4.6 .279	7.eefs
	133.00	1.38485	${ }^{6.58882}$	$\bigcirc 000$	-23.4283	29.1693
	112.00	-9.22400	6.02227	1.c00	-29.e469	. 3.3698
	118.00	-12.5440]	7.07E15	1.000	-39.2615	14.0035
	127.00	-7,3889	6.08950	1 CED	-28ecti	11.8251
21.50	10.00	2.12800	${ }^{7.40473}$	T.000	-29.7885	30.0145
	14.00	8.74400	5.7e935	-.con	-15.1548	29.4488
	19.00	13.6 ccog	7.17368	612	-9 1410	45.00
	29.00	8.20600	6. 27135	1.600	-13.6621	30.4081
	31.00	22.42000	7.42452	625	-5.5764	50.4184
	4 e .50	7.8840	E.62643	¢.cos	-14.3e3s	29.7315
	61.00	4.0120	7.58885	1.603	-24¢eas	325505
	53.00	. 6040	8.00671	\%.cos	-30.6e82	22.3 eaz
	e9.00	$3.82 e 00$	¢. E ¢005	1.600	-15.5311	25.7871
	E3.00	18.08E00	7.51 e52	-.con	-122185	44.2645
	¢e. 0	2.92000	7.58472	i.ce0	-28.0t65	31.8665
	88.00	3.64800	5.72340	7.600	-19.23:3	25 E288
	\%e.00	2.62480	7.47624	¢.ceo	-25.2224	31.ced4
	78.00	17.34400	7.12800	. 893	-9.7289	44.4176
	ec. 00	18.0985	5.64871	. 228	-8.0373	35. 1878
	87.00	11.0eces	7.48898	8.000	-17.1283	$332 \mathrm{2e}$
	65.00	15.42005	5.60c92	4.005	-11.4761	32.4121
	48.00	-1.9evos	7.51787	:.cos	-39.2713	28.3518
	168.00	44405	7.48754	1.000	-27.7612	25 e782
	110.00	20.28405	7.19627	749	-6.7684	47.2274
	112.00	9.2ee00	6.76132	- CzO	-12.e635	31. Tets
	116.00	8.23809	7.62370	;.coo	-22.5113	34 ¢633
	127.00	11.46200	¢.83279	: 000	-105825	33 Ee85

	㦴		

	析		

(1) Condition	(J) Condition	Mean Difference (1-J)	S:d. Eror	Sig.	65\% Confidence Interval	
					Lower Bound	Lpper Bound
	16.00	-9.54008	7.15548	8.009	-35.e884	19.0684
87.00	14.90	4.32400	$5.4 e 597$	\%.co3	-24.8894	18.3484
	19.00	7.61209	8.9 ¢е33	9.c03	-19.2357	33.8597
	21.00	-11.0e800	7.42880	8.603	-30.2828	17.1283
	26.00	-2.8ectos	6.5E370	\%.003	-23.2510	15.1319
	31.00	11.38205	7.18 ezz	$\therefore .003$	-15.7103	35.4143
	4 e .00	-3.38403	5.5ce39	2.000	-24.2144	17.4484
	8.00	-7.0589	7.34884	;.cos	-34.7193	20.64 .73
	63.00	-11.6720]	т.77685	3.803	-1.1735	174285
	es. 00	-7.44cto	5.54175	1.003	-29.3883	13.5093
	e3.00	5.02008	7.27103	1.009	-22.3e18	32.4016
	ee.00	-9.14803	7.44482	8000	-38.1845	12.8889
	e2.00	-7.42009	5.46083	1.609	-29.6734	13.2234
	72.00	-9.7e403	7.22256	1.003	-35.4205	18.0525
	72.00	6.27e09	9.92095	1.cos	-12.8283	32.3783
	2c. 00	6.01209	6.52875	1.000	-15.8627	25.6187
	EE.00	-.60053	5.47609	1.000	-21.3204	201204
	¢ 8.00	-13.02809	7.27259	1.005	40.4148	14.5 E88
	188.60	-10.52403	7.26149	-008	. 376317	16.ees?
	150.00	9.18830	8.62813	1.600	-13.8957	35.2877
	\$12.00	-1.6i209	6.4ecs2	3.000	-22.46E8	19.8718
	118.00	4.63200	7.36277	1.603	-32.ee9a	23.0058
	127.00	. 42403	5.51712	1.000	-20.4347	21.2827
85.00	15.00	-9.34005	5.3 eeso	\%.603	-29.8319	1185.18
	14.00	-3.72403	2.72371	1.c00	-14.0187	8.6707
	14.00	9.41200	5.04220	:.c00	-10.e605	27.4745
	31.00	-10.48800	5.60082	;.C05	-32.4121	11.4761
	29.00	-2.2ecos	2.50634	:.000	-13.2013	g.es19
	31.50	11.25200	5.46742	-093	-9.4453	323682
	4 e .00	-2.78409	2.61885	1 cos	-134024	7.8344
	Et.00	-8.46e09	5.61772	- 600	-27.7037	14.7817
	E3.00	-11.27200	0.17443	7.000	-34.e308	12.0929
	et. 00	-0.64000	2.88244	893	-17-e953	4.0153
	e2.00	¢.62C09	5.51692	7.003	-15.2548	29.4648
	ee.00	-7.54803	5.74887	1.600	-29.2e81	14 tE01
	e9.00	-8.22003	2.72222	. 870	-17.6752	3.4252
	7 C .00	-7.52400	6.4e875	8.000	-29.2e51	13.0671
	72.00	6.57e99	5.00315	i.090	-12.2e23	29.6143
	86.00	5.81203	2.85929	- 690	.51809	18.3808
	87.00	.6ec39	5.47899	1.85	-20.1204	21.3204
	68.00	-12.42E80	5.58147	¢ ว	-33.3683	5.4539
	169.00	-10.02400	5.48375	:.c50	-30.8602	10.7622
	10.00	9.76eso	6.cet29	:.c00	-0.3276	23.9103
	\$12.00	-1.21200	2.74003	-.cos	-11.5303	8.16s3
	118.00	- 2.23200	5.87817	1.000	-25.7098	172459
	127.00	1.02409	2.69679	1009	-2.es15	11 e 885
Tamhane						
il: Constion		Mean			Q55\% Confidence interval	
	(J)Condiaion	(1).j)	5:c Emor	5 m.	Lower Bound	Upper Ecund
68.50	16.00	4.08660	7.18788	9.000	-22880	31.1598
	14.00	8. 5.400	5.56 .338	1.009	-12.1300	29.6380
	18.00	20.84cob	0.escos	E45	. 53347	47.0147
	21.00	1.98000	7.51787	1.050	-26.3513	302716
	26.00	19.1 eeg	6.59862	-.600	-10.6829	31.3189
	31.30	24.3860	7.21268	199	-2.ecs	-15023
	4 e .30	0.84400	5.56151	1.030	-112488	30.8349
	\$1.00	5.97200	7.37751	1 980	-21.8104	33.7E<4
	63.00	1.15eos	7.66.977	1.050	.29.2578	з0.¢еө9
	${ }^{1} 1.00$	3.52000	5.58388	1.c0s	-15.5169	28.8959
	e3.00	19.04800	7.30299	.679	-245:1	45.5 ED
	ee.so	4.68600	7.47 e19	1.630	.23.2723	330343
	89.00	5.5c80	5.50219	1.830	-15.2072	29.4232
	7 C .00	4.68409	7.28 .472	-. 630	-22.5139	32.3018
	78.00	12.30409	¢92451	. 783	-9.6250	45.5330
	ес.so	19.04cap	5.57175	. $3 \mathrm{a7}$	-3.6244	39.1044
	87.00	13.02805	727260	1.680	-14.3E8P	40.9120
	Es.00	12.42803	E.52:47	898	-94533	33.2089
	108.00	2.46403	722355	- 000	-25.0245	29.8225
	140.00	22.22403	6.98180	. 33	-3.8945	49.4425
	112.00	11.21 e03	¢.51443	:000	-2.e284	32.ce14
	18.00	в.98е03	7.42384	:.c50	-19.7e03	38.1523
	127.00	13.45200	6.5E6:1	ев弓	-7.68es	344783
103.00	10.00	1.88400	7.eec72	-. 000	-25.3647	29.8727
	14.00	8.36630	5.46053	1.000	-14.4284	27.5284
	14.00	19.43e00	8 ezepz	. 882	-7esss	4.5278
	21.00	-.44400	7.44784	1.000	-23.e79	27.7812
	26.00	7.76400	E.see17	1.con	-13.2828	23.108
	31.00	21.97630	7.16743	483	-5.1285	43.6805
	$4{ }^{4} .00$	7.24050	E.523e5	1.600	-13.4452	29.125
	51.00	3.5eers	7.35872	$-\mathrm{CO}$	-24.1285	31.2725
	52.00	-1.24893	7.76620	\%.cas	-30.5893	23.6623
	81.00	3.18480	E.sEe2s	i.603	-17.8185	24.1875
	83.00	15.64430	728215	1.050	-11.7793	$43.0 \mathrm{e73}$
	ee.oo	2.47 Cag	7.45572	-.cis	-25.8014	30.5534
	еe.oo	3.20400	5.47E35	1.000	-17.6054	235134
	7 Cog	2.44603	724367	1.009	24.2384	29.7184
	7 P .00	18.00600	8.94255	.886	-2.2462	43.6492
	80.00	15.82ezo	E.54429	.765	-5.2233	39.5659
	87.00	15.32400	7.25148	1.600	-10.e83	37.5317
	65.00	13.02409	¢.49275	1.009	-107622	35.2002
	5 E .10	-2.46430	7.28355	1.000	-23.8325	250245
	110.00	12.82000	${ }^{\text {9.93673 }}$	710	.a.3150	65.8 EES
	112.00	${ }^{\text {日. } 61200}$	5.4e372	1.600	-11.8279	${ }^{29} 5$ E513
	118.00	5.76200	7.46305	i. 610	-2.0863	33.2709
	127.00	11.04800	6.53163	- COO	. ${ }^{\text {a } 2809}$	31.6e21

$\frac{19}{115.00}$ Condition	(J) Condtion	$\substack{\text { Mean } \\ \text { D.fference } \\ \text { II-j) }}$	Sto. Error	Sig.	95\% Confidence interval	
					Lawer Bound	Upper Bound
	16.50	-18.12e70	${ }^{6.63936}$. 898	43.8927	7.207
115.00	14.00	-13.52cad	5.04497	. 883	-32.5815	5.5515
	19.00	-1.38403	6.58882	8.cod	-29.1693	23.4283
	21.00	-20.20400	7.18527	748	47.3274	6.7894
	28.00	-12.05e00	5.14003	¢88	-31.4742	7.2822
	31.00	2.15e0s	8.67152	i. 600	-237223	29.6343
	4 e .00	-12.59C00	5.06235	.970	-31.8231	g.ee31
	E1.50	-18.25.200	7.03829	997	42.7503	10.2558
	se.00	-21.0e800	7.46014	767	48.2851	7.1401
	01.00	-18.82e93	5.12703	200	-38.6.79	2.7350
	e3.00	-1. 27950	3.80023	:.635	-30.3880	22.6370
	e8.00	-17.34400	7.14102	987	442424	2554
	ee.so	-16.ateos	5.02830	269	-35.ezea	2.4348
	78.00	-17.3ecso	0.91589	887	43.4488	8.eenz
	78.00	-2.82000	6.80410	-.c39	-27.7885	21.6489
	80.00	4.18400	E. 11411	$1 . \mathrm{CDJ}$	-23.5078	15.1388
	87.00	-8.16e50	8.92813	i cso	-352e77	18.8657
	QE.00	-9.76e00	5.05823	:000	-23.6189	9.2279
	68.00	-22.22430	6.98180	233	-49.4425	3.6945
	108.00	-19.62000	8.98973	. 710	-5.8559	8.3159
	12.00	-11.00600	5.04833	1.000	-30.0812	3.6753
	12.00	-14.02800	7.08882	1.000	40.7185	12.ee25
	127.00	-8.77200	5.10045	1.000	-29.0457	10.6017
112.00	10.00	-7.12800	5.35813	1.600	-27.3925	13.1265
	14.00	-2.51250	2.71343	$1 . \mathrm{cos}$	-12.7205	7.7085
	19.00	9.62403	5.03227	1.603	-2.3689	29.9498
	21.00	-9.2Eedo	5.76132	\%.c00	-31.1ess	12.e.35
	28.90	-1.04205	2.88631	1.600	-11.8184	2.e224
	25.00	13 te405	$5.3972 \times$	${ }_{689}$	-7.2489	33 ET 48
	4 e .00	-1.57209	2.60054	¢.c03	-12.1187	9.6727
	5.00	-5.24400	8.50791	¢.c03	-28.9881	15.eest
	53.00	-10.08089	8.88550	1.cos	-33.3925	13.2725
	E1.00	-5. 82 EaO	$2 . .68288$	\%.cos	-18.4113	5.1653
	e3.00	0.62200	5.50983	1.600	-14.0083	27.8703
	ee.00	-6.33eso	5.73707	\%.cod	-290393	$15.3 \mathrm{C73}$
	8. 50	-5.80830	2.7029	1.005	-15.7887	4.6707
	78.00	-8.37200	5.45e67	:.603	-27.0185	14.2725
	78.00	8.08890	5.05228	T.083	-110187	27.te97
	80.00	8.62400	2.83669	.6e3	-3.8713	17.6:93
	87.00	1.61209	5.4895:	8.003	-19.e718	22.4858
	85.00	1.21280	2.74000	1.009	-2. 1683	11.5303
	¢е.00	-11.21eso	5.51143	:.603	-32 ce_{14}	2 e294
	108.00	-8.61200	5.48372	i.cod	-22.5E19	11.6279
	110.00	11.00830	5.04838	0.005	-3.0753	30.6412
	110.00	-3.02680	5.58949	:.c50	-24.4e24	1.9 .4224
	127.00	2.22800	2.01623	8.000	-9.3e8.	12.8282

milandation	illicandition	$\begin{gathered} \text { Mazn } \\ \text { Difference } \\ \text { K-J. } \\ \hline \end{gathered}$	5:a Error	Sif.	65\% Contidence interval	
					Lower Bouna	Upper Bound
118.00	16.50	- 40860	7.36 .654	1.000	-31.e.334	23.4674
	14.0	.50eso	5.bees	1.800	-298234	21.6384
	19.00	12.84480	7.07515	1.600	-14.C635	32.2615
	21.00	-8.23e00	7.82270	;.009	-34.8¢33	22.E113
	26.00	1.97200	5.7ecza	-.009	-19.7e73	23.7113
	34.00	19.18400	7.33621	1.000	-11.4E49	43.8228
	46.50	1.44800	5.5073a	1.000	-20.1357	23.0217
	-1.00	-2.22400	7.485 .51	9.003	-30.4507	28.0627
	e2.00	-7.04003	7.22133	9 603	-39.8723	22.7623
	e1.00	-2.56800	5.73885	1.c00	-24.2cE4	19.0894
	83.00	9.a¢200	7.42227	1.603	-19.6691	37.8631
	ee.do	-3.31e99	7.56283	1.000	-31.6085	25.2785
	еع. 30	-2.58e93	¢.8e037	$1 . \mathrm{cos}$	-24.0C10	18.8250
	7 c .30	-3.36200	7.32452	1.689	-31.1e11	24.4571
	78.30	11.verg	7.08633	1.000	-15.5929	37.ecbs
	20.00	8.54400	5.72709	\%.ces	-11.8112	31.4692
	87.00	4.63290	7.36217	1.000	-23.0052	32.ee8
	66.00	4.23250	5.67817	i. 009	-17.2459	25.7ces
	68.30	-8.16eg	7.42984	1005	-36.1623	12.7609
	108.00	-5.78200	7.40305	1.000	-33.8709	$22 . \mathrm{cees}$
	110.00	14.02800	7.08 esz	7.600	-12.8825	40.7185
	:12.00	3.02000	¢. 8 e849	1.005	-13.4224	$24.4 e^{24}$
	127.00	5.2Eepo	5.71489	1.609	-10.3543	35.2089
127.00	12.50	-8.3e400	5.40623	1.000	-28.7671	11.6081
	14.00	4.74 E00	2.60818	1.603	-15.3272	5.9312
	16.00	7.38e80	5.08450	8.000	-11.225 1	29.6 c 11
	21.00	-11.48200		-.CDO	-33.5e85	10.5825
	26.00	-3.28400	2.9744	8.009	-14.4923	7.9249
	31.00	10.92 en 0	5.44589	1.099	-2 eeog	31.e1eo
	48.50	-3.6030	2.68289	3.009	-14.7020	7.6880
	51.00	.748030	5.6E.482	1.003	-29.ee25	13.9625
	200	-12.26800	6.20821	-. 000	-35.7831	11.1811
	e1.00	-7.56400	2.05403	. 892	-18.8897	3.2007
	e3.00	4.56 emo	5.56738	-.033	-16.4ts	25.ecrs
	Be. 30	-8.57200	5.76284	1.008	-30.4415	132675
	ee. 30	.7.64400	2.76890	787	-19.3e48	2.eser
	7 7 .30	-8.5cego	5.56298	:-033	-23.4277	12.2117
	78.00	8.06200	5. 1 C423	8.cas	-13.4393	25:1403
	96.50	4.58800	2.92152	:.c3s	-6.4E19	15.2278
	87.00	. 42400	5.51712	1.c3s	-21.2927	20.4347
	65.00	-1.02400	2.52479	1035	-11.685	7 EE 15
	er 30	-13.45205	5.55.529	.8я2	-34.4733	7 5ess
	168.00	-11.04880	5.52188	1.030	-31.6e21	8.8881
	110.00	8.77200	5, icca	i.c59	-10.56. ${ }^{\text {c }}$	29.5457
	112.50	-2.23eat	2.1528	1.c3s	-12.8382	9.3262
	118.00	-5.26e30	¢. 71485	1.030	-29.eenz	10.3548

K．TAMHANE＇S T2 TEST LEVEL 5 （EFFORT）

A）Condition	（d）Candrion	$\begin{gathered} \text { Miean } \\ \text { Difference } \end{gathered}$$(1-J)$	S：a．Emror	Sig．	95\％Contidence interval	
					Lower Ecund	Upper Bound
7，00	12.00	－98．76050	53.22987	969		97．6711
	23.00	－50．67200	03．62e29	1000	－302 2 278	192.5239
	27.50	－209．76e00	E3．0760	010	－363．6425	－23．5835
	38.30	－9．17200	71.41933	i．600	－2E6．0727	239.7287
	44．00	－183．38．40＇	52．6eav9	． 039	－373．8ees	4.6092
	58.30	－185．78400＇	53．13943	048	－371．2000	． 3388
	76.09	－171．88．400	52．98E88	． 114	－3568007	13.0727
	73.00	－300．54403	73.02059	2.009	－354．0621	152.6148
	74.00	－129．38909	83．7e887	E63	－370．8E41	113.8181
	95．50	－172．88400	53．55823	077	－3e6． 7680	6.8209
	102.00	－109．6ecto ${ }^{\circ}$	53．367E7	024	－393 1272	－10．5829
	168．00	－70．71200	71.74878	i．000	－312．7821	178.3201
	177．00	－172．44003	63．01690	110	－357，4272	12.5472
12.00	700	日s．tecod	$53.22 \mathrm{eg7}$	6.93	－87．0711	294．e311
	23.50	33．90es0	48.6 CC 15	－．COD	－130．e090	208.4229
	27.30	－ 80.974000	17．3e781	00_{0}	－170．2213	42.201
	26.00	${ }^{\text {90，}} \mathbf{8 0 8 0} 0$	50．ธ¢ея	．68\％	－96．8623	289.6183
	44.00	－80．berco	18.72 e 23	cos	－149．e617	－32．5343
	E6．00	$-87.00 .400^{\circ}$	17.56874	．caj	－125．0E42	－25．5240
	760	－73．09409	17．15779	c02	－132．e430	－13．5250
	72.30	－1．72400	53.06344	i．coo	－189．6e：99	193.4349
	74.00	－28．5e800	49.51203	： CDO	－189．7879	13\％．2219
	2¢．00	－81．20400＊	18．5i：93	CE2	－128．5160	－15．e629
	162.00	－88．08cer	13．32159	cos	－181．8149	－34．3454
	tce．00	23．08400	51.31 fqa	： 0.000	－150．9ess	207.0636
	177.00	－73．eecco	17.26438	cos	－133 28.47	136203
23.00	7.00	53.67200	68．32629	1.005	－182．5632	302.2079
	12.30	－38．ececd	49.36015	：．000	－209．4723	$130 . \mathrm{ecss}$
	27.00	－143．62400	48.38185	188	－317．eega	12.8633
	36.30	\＄1．76000	09．00es3	1.000	－184．3675	237.7675
	44.30	－120．51200	43.14854	500	－2076232	35.4812
	86．50	－125．81200	49.46713	584	－284．6493	43.1242
	76．30	－111．98209	43.26483	857	－280．60．25	50.5185
	73.30	－0．67200	e2．58719	＋．000	－282．6735	201.2265
	74.00	－88．48em	${ }^{68.27189}$	1.000	－299．6290	161.6370
	86．00	－120．11200	49．91292	730	－290．6721	50.4481
	102.00	－139．88800	49.74003	383	－308．8703	32.6443
	108．00	－11． 54400	95．35334	1003	－245 1071	2254181
	1：17．00	－112．5880］	48.31803	$8+8$	－281．1338	55.8973

Tamhane

（1）Condtion	（J）Canaition	mean Difference （1）J）	S：0．Efror	S：9	255\％Confidence interval	
					Lower Bound	Upert Bound
27.00	700	209．76e00	55.07081	010	25.5695	323.9425
	12.00	102.970^{5}	17．3e781	003	48.2201	170.3312
	22.00	143．88409	48.38185	182	－18．4009	317．ee日
	25.00	200.58400	50.04823	002	23.8704	377.2975
	44.00	18.38905	10．08233	－ 005	－39．4675	75．1935
	54.00	22.97205	10.98398	－ 005	－35．6854	81.8244
	7 C .50	39.88205	13．52e65	810	－25．4E01	84.2 e 41
	72.00	109.21200	52.68347	678	－78．3200	292.7440
	74.00	80.38205	43.26414	1.005	－85．6e07	245.8687
	8 E .00	29.77203	13.24359	\％．CD	－34．E82	62.1089
	102.00	11.6 Ecos	17.77517	1.600	20．2074	73.5884
	108.00	133.04600	51.11202	483	40.2684	310.3794
	177.00	38.3180 .3	18.57712	631	－212242	63.8582
30.00	7.00	9．97200	71.41838	i． 000	－239．7287	258.0727
	12.00	－90．86803	50．6Eeg8	¢日8	－269．0183	80.8623
	23.50	－51．7ccod	83.00848	5.000	－287．7675	134.3675
	27.00	－200．58400＊	50.64823	003	－377．2978	－23．e704
	44.00	－181．21800＊	50．42563	635	－357．1874	－5．2448
	69.00	－i77．81209＊	50.72034	［49	－354．6881	－6679
	70.00	－183．66209	50．5e98a	118	－340．1437	12．7597
	73.00	－62．37209	71.27845	3.000	－330．7832	155.045%
	74．00	－120．34603	67.44425	． 960	－356．637．9	115.6458
	85．00	－171．31200	51.1 ceg	079	－360．2202	6．EE83
	102.00	－188．58e00＊	50.90673	023	－368．6449	－10．8311
	100.00	－62．54400	63.97663	：000	－305．4343	190.3493
	117.00	－184．2ee00	50．56．5．5	112	－340．7728	12.2388
44．00	7.00	${ }^{182.38805}$	52.65819	038	4.6092	373.2 e63
	12.00	60．acedo	18.72823	cog	32.5343	145.2817
	23.00	120.51800	4．34864	600	－33．4E12	297.6232
	27.00	－18．3e85	13．08232	i．cos	－75．1835	36.4675
	39.00	181．21e00	60．42660	． 035	5.2440	357.1874
	69.00	3.68405	10.36880	1.608	－53．0087	65.2147
	70.50	17.52403	15．53332	－ 000	－37．43E5	72.4835
	73.00	89.64435	52．87029	1.000	－94．6777	$272.2 e 57$
	74．50	81.02005	$4.8 .50 c a s$	1.000	－109．6797	229.7187
	85． 5 J	8.40403	17．51582	3.005	－51．7e47	70.6727
	102.00	－7．47203	17．3051	： 000	－89．6473	52．0638
	108.00	118.67200	50．38242	847	－59．9220	2382780
	117.00	1894230	15．68381	；．003	－33．1873	72 ce33

il) Condition	(J) Condition	Mean Difference $\{1-\mathrm{J}\}$	S:a. Efror	3 Sg.	05\% Confidence interval	
					Lower Bound	Upper Bound
E9.00	7.00	785.78400	53.12843	648	3889	371.2600
	12.00	$87.00400 \cdot$	17.58 E 74	. 00	25.9240	143.0840
	23.00	125.97200	4.48 .713	.684	43.1248	294.6489
	27.00	-22.98200	18.58388	9.000	-81.52\%4	35.8804
	38.00	177.31200	50.72034	. 048	. 8578	354.5e81
	44.00	-3.60403	18.30808	i. 008	-00.2147	83.cce7
	78.00	13.92005	18.74830	i.col	-4.2153	72.0563
	73.00	85.24000	52.85254	1.000	-90.5223	270.0023
	74.00	57.41000	48.32675	:.000	-111.3152	225.1472
	85.00	5.accoo	15.44274	1.000	-58.2223	80.8228
	102.00	-11.07e00	15.97680	1.000	-73.4870	51.3950
	1ce.00	115.0e80	51.32447	. 903	-83.5C97	293.4587
	117.00	13.34402	19.78813	i. CO 5	44.8571	71.8451
70.00	7.00	171.85405	52.06563	. 114	-13.0727	350.8007
	12.00	73.08405	17.16770	. 02	13.6250	132.4430
	22.00	111.98205	49.25843	. 257	-58.5185	290.5025
	27.00	-38.68200	19.52885	. 810	-94.2e41	20.4801
	36.00	103.56200	50.5e888	. 118	-12.7687	340.1437
	44.00	-17.52400	15.63332	-. 000	-72.4835	37.4385
	58.00	-13.92000	18.74830	t.c00	-720553	44.2153
	73.00	71.32000	52.65828	i. COS	-112.6813	255.8613
	74.00	43.49800	49.21178	1.c03	-124.7078	211.e969
	e5.00	-8.12005	13.02431	- 500	-70.e970	54.4670
	162.00	-24.9800	17.55014	i.c0s	-85.8210	35.6280
	tce.00	101.14800	51.02520	.888	-78.8318	278.2278
	117.00	-. 57 e00	19.33858	i. COO	-57.2777	56.1287
73.00	7.00	10.54400	73.02059	i.000	-152.9 141	354.0021
	12.00	1.78450	53.08344	1.00	-183 43-8	158.5828
	23.00	40.67205	89.88715	1.c00	-201.2205	282.6735
	27.00	-109.21200	52.38347	972	-282.744D	78.3209
	36.00	02.37203	71.27845	1.000	-155.C45a	338.7688
	44.00	-88.64493	52.87028	1.005	-272.e65	94.677T
	E9.00	-86.24003	52.96264	1.600	-270.0023	00.6223
	70.00	-71.32003	52.ccez\%	1.000	-255.e013	112.8613
	74.00	-27.62403	e9.82e43	1.003	-282.515	213.8 e 72
	85.00	-78.44030	Е3.3ея8.5	1.000	-285.6852	108.7152
	102.00	-88.31293	53.21158	¢88	-281.6428	88.3108
	108.00	29.82800	71.61045	1.000	-218.7375	2783035
	117.00	-71.68209	52.623*5	+. 000	-258.2278	112.43 EP
Tamhane						
il) Condition		Mean Difference			8550 Confidence intervas	
	(J) Cendition	(1-J)	Sta. Esror	Sig.	Lower Bound	Upper Bound
74.00	7.00	128.3e800	83.79887	. 689	-113.8181	370.5541
	12.00	29.5880	28.51303	1.080	-138.8218	128.7879
	23.00	89.49epo	09.27185	1.600	-181.5370	295.6293
	27.00	-80.38enj	48.28414	1.cso	-248.e287	8. 6808
	36.90	120.1900	07.84425	. 609	-115.e458	358.6378
	44.00	-81.02000	45.0ecej	1.000	-229.7197	108.8787
	59.00	-57.41009	43.32975	1.000	-226.1472	111.3152
	70.00	43.48800	49.21178	- CoO	-211.eges	124.7679
	73.00	27.82400	80.52e43	-.c00	-213.8e72	269.5152
	86.00	-51.5te0	49.62825	\%.cos	-221.8732	118.6412
	102.00	-08.4820	49.5 E221	j.CDJ	-238.1703	101.18e3
	160.00	57.68200	89.28143	ग.cod	-170.2985	294.7005
	177.00	+4.07200	43.22840	1.CDD	-212.3313	124.1873
25.00	7.00	178.98400	53.55529	077	-6.8200	388.7880
	12.00	81.26400^{*}	15.51530	. 022	15.8920	148.5180
	23.00	120.:1203	49.81282	732	-50.4491	220.8721
	27.00	-28.77200	13.24350	1.005	-92. 1080	34.5820
	39.00	171.61200	51.15587	. 678	-8.5.68	359.2202
	44.00	-9,40403	17.61698	1.C00	-70.E727	51.7427
	68.00	-5.80000	18.44274	1.COO	-62.8229	59.2229
	70.00	8.12000	15.02431	1.cos	-54.4E70	$70 . \mathrm{eg70}$
	73.50	70.44000	53.38985	:. 000	-108.7152	285.6652
	74.00	51.61 e0s	45.62e25	8.000	-119.6412	221.8732
	102.00	-18.07e0s	19.17384	3.000	-83.4203	42.8783
	168.00	109.28800	51.51008	. 801	-70.7512	239.2872
	117.00	7.54400	13.08877	$\bigcirc \mathrm{COS}$	-55.1285	70.2745
102.00	7.05	$188.50 \mathrm{cas}{ }^{\circ}$	53.36757	. 024	10.5828	333.1372
	12.50	83.8ecos*	18.3 2158	000	34.3454	191.8148
	23.50	135.98end	48.74603	283	-32.9943	309.9703
	27.00	-11.aceas	17.77517	7.600	-73.5684	48.8074
	38.00	189.58800 ${ }^{\text {a }}$	50.96073	023	10.8311	390.5449
	44.00	7.47200	17.02C5 1	т. 000	-52.0036	86.8476
	68.50	11.07eos	17.976es	-.cos	-51.3350	73.4870
	70.00	24.28e0	17.58014	:000	-35.9290	85.9210
	73.00	89.31 eos	53.21159	. 883	-88.3109	281.8428
	74.00	89.4820	48.6 E321	1.000	-101.1863	238.1703
	96.50	18.67 ED	19.77384	- 600	49.8783	83.4203
	108.00	126.14405	51.45242	. 843	-53.3282	3 35.e182
	17T.00	24.42C03	17.58572	- 600	-38.8e2a	85.5028

(1) Condition	(J) Cendition	Mean Difference (i-J)	S:oi. Error	Sig.	255\% Confidence Interval	
					Lower Bound	Upper Bound
108.00	7.00	70.71600	71.74878	4.005	-178.3201	318.7621
	12.00	-28.00405	51.31582	-.$C 0 J$	-207.0938	150.9853
	23.00	10.84400	85.35334	3.CDO	-220.4191	249.1071
	27.00	-133.04CD	51.11292	488	-318.3784	40.2894
	29.00	62.54400	82.97682	${ }^{1} .600$	-180. 3483	305.4343
	44.00	-115.87200	52.59242	. 247	-288.2760	53.8320
	68.00	-115.0eed	51.184:7	. 803	-293.e457	83.5087
	70.00	-101.14800	51.02520	. 983	-270.2278	78.9319
	73.00	-20.52200	71.61 .645	T.C05	-278.3035	218.7375
	74.00	-57.6E200	89.26143	3.CDD	-284.7005	179.3865
	86.00	-103.28805	51.81802	. 881	-282.2872	70.7512
	102.00	-126.14400	51.46242	.743	-30.5.et62	53.3282
	117.00	-101.72400	E1.0ECO2	E89	-270.8E93	78.4683
117.00	7.00	172.44000	63.01089	. 110	-12.5472	357.4272
	12.00	$73.9 \mathrm{cos}{ }^{\prime}$	17.20439	. $\mathrm{CD2}$	13.9383	133.3807
	23.00	112.5e8s	49.31603	. 848	-5.5.e978	231.1338
	27.00	-38.31200	16.57712	. 631	-63.8E82	21.2242
	38.00	184.2 egaj	50.58 E 53	112	-12.23es	340.7728
	44.00	-10.94805	$15 . \overline{8} 2.291$	1.000	-72.6833	35.1873
	58.00	-13.34400	19.76813	- 0.000	-71.0454	44.9671
	70.00	. 57603	16.33.52	3.000	-58.1257	57.2777
	72.00	71.68 cas	52.62345	$\bigcirc 000$	-112.435	258.2278
	74.00	44.05200	$49.220 \div 5$	1.000	-124.1873	212.2313
	26.00	-7.54400	18.0887	- Cos	-70.2745	55.1805
	102.00	-24.42009	$17.58 \mathrm{EP9}$	3.000	-85.E02日	38.2028
	106.00	101.72400	51.05082	. 888	-78.4083	278.858 .3

L. TAMHANE'S T2 TEST FOR LEVEL 6 (EFFORT)

(1) Cordtion	isicencition	\qquad Difference (1-J)	Stc. Error	5 Sa.	95\%\% Confidence inter:al	
					Lower Bound	Upper Hound
18.00	20.00	-132.82005 ${ }^{2}$	31.43977	. 016	-259.8385	-8.8034
	22.00	- 225.28400^{*}	31.3 eceo	cos	442.6088	-201.5584
	25.00	-230.02C00*	33.62551	. 000	-382.6992	-07.3403
	2 e .00	-310.52400	31.47 Eea	cod	434.8884	-1892316
	28.00	-282.51205*	28.56833	. 600	-393.8782	-171.3451
	32.00	-95.12403	31.92582	. 733	-217.9817	27.5837
	38.00	-101.64400*	32.19848	. 000	-315.8828	-04.8254
	3 e .30	-184.2e400	31.77448	. 605	-302.ec25	-59.6254
	48.00	-55.46400	30.9129 ?	j.cos	-177.3411	88.5231
	52.00	-297.62400*	30.28391	.cD	417.2623	-178.6062
	64.00	-284.97e00	31.68232	cos	-10.7804	-162.1718
	57.00	-213.22003*	31.62895	cod	-339.1e91	-87.2709
	68. 50	- 331.68200°	32.73802	cos	458.8178	-204.6e82
	ec.00	-213.58C00	28.58884	cos	-410.6481	-203.3112
	64.00	-182.03800*	22.07483	cod	-278.7385	472235
	72.00	-140.21200	32.26853	coa	-287.4e83	-12.0557
	81.00	-208.12000	31.75433	cos	-333.3781	-82.8egs
	82.00	-404.98200	31.98432	. 600	-531.0414	-278.4428
	8 e .00	-385.19e00*	29.55 e 29	.cos	489.8649	-273.8271
	88.00	-283.40800 ${ }^{\text {+ }}$	30.57232	cod	-384.0023	-142.8137
	$\underline{4.00}$	-252.18809*	31.91173	. 000	-383.C481	-136.2868
	82.00	-387.88409	32.46832	000	-525.728.5	-270.03.85
	\$3.00	-132.71200	31.47117	015	-256.8E66	-5.5754
	84.00	-223.40000*	30.34707	. 005	-343.1687	-103.e933
	104.00	-175.78000	32.14864	000	-302.5e97	-48.6503
	113.00	-310.80403*	31.88481	000	-44.7877	-104.8203
	114.00	402.7ecos	32.81435	.cos	-538.4188	-281.1004
	118.00	-352.52000*	$28.76{ }^{2} 0$. 000	458.2656	-240.8444
	120.00	-310.71200	31.37480	. 000	-443.4713	-185.9527
	123.00	-107.73200	31.69288	. 000	-323.5388	-71.9254
	124.00	-340.62009	30.72cs5	. 000	- 21.9885	-218.2875
	125.00	-08.a7200	30.54208	615	-210.3471	21.8031
	128.00	-186.53eog*	30.63583	cos	-307. 3810	-85.8810

Tamhane

in Condition	(J) Condition	Mesn Difference ($1-\mathrm{J})$	S:c. Error	5 Sg .	8.5\% Confidence interval	
					Lower Bound	Upper Bound
20.00	16.00	132.62000 ${ }^{\text {a }}$	31.43877	016	8.8034	258.23 ¢ 6
	22.00	-182.42400	31.68217	000	-318.2248	-69.7034
	2 E .00	-97.2ccos	34.11183	.923	-231.7714	37.3714
	2 e .00	-177.76403	31.98127	000	-303.8949	-E1.5131
	28.00	-149.76200	28.77180	.000	-263.3333	-38.2502
	32.00	37.63 eg	31.042.21	$1 . \mathrm{cos}$	-87.1842	102.4882
	3 e .00	-58.02409	32.70203	1.c00	-189.C233	63.9753
	3 e .00	-51.44400	32.29425	1.000	-178.7912	75.9032
	48.00	77.41805	$31.43 \mathrm{CB3}$	- CDD	48.5885	201.4205
	52.00	-105.00403	30.76967	.000	-288.EE65	43.6715
	54.00	-152.10ea	32.40029	.0D2	-27e.6e11	-24.3509
	E7.00	-80.46cos	32.43 e 35	1.005	-203.2475	47.5475
	58.00	-180.07205	32.87e59	. 000	-327.6801	-70.1e38
	ec.00	-180.se003*	27.29108	.cDo	-289.e353	-73.0847
	e4.00	-28.21e03	20.63102	i.cod	-146.1224	87.8804
	72.00	-7.38209	32.7e187	1.003	-138.e251	121.6411
	81.00	-75.3Ccas	32.284\%	1.000	-202.5885	51.889
	82.00	-272.:7200'	32.4e133	000	- 80.2181	-144.1259
	88.00	-253.37603*	20.122:9	cos	-305.2003	-138.4617
	88.00	-130.5e803	31.10187	018	-253.2737	-7.8023
	81.00	-129.34853	32.4test	C< 4	-257.2286	-1.4874
	82.00	-285.0e400	32.9ce34	ced	-384.8753	-135.2522
	93.00	.10403	$31 . \underline{\text { gex }} 84$	1.000	-128.ces5	128.2735
	84.00]	-80.5ecos	30.68649	. 881	-212.38<4	31.2344
	104.00	42.64000	32.6EC83	1.000	-171.7339	85.2633
	113.00	-188.98400	32. 19587	009	-313.9822	-5e.8858
	114.00	-276.64c00*	33.11120	COD	407.5538	-149.3282
	118.00	-212.60c00	27.3e600	cos	-327.8758	-111.7244
	120.00	-188.69200*	31.28083	coso	-312.8e87	-81.c873
	123.00	-84.91200	32.46 CBS	1.000	-162.7184	62.2854
	124.00	-207.00803*	31.28281	000	-331.2489	-84.3698
	125.00	33.94800	31.07214	i.cos	-98.6287	158. ¢167
	128.00	-53.71000	31.16432	¢.cos	-176.e478	60.2169

Tamhane

(i) Condition	id Cardition	MeanDifference(1-J)	S:a. Error	Sig.	65\% Confidence Interval	
					Lewer Bound	Upper Bound
22.00	18.00	325.28400°	31.38880	000	201.5694	448.0086
	20.00	102.4e405	31.58217	cos	83.7034	318.2248
	26.00	85.22405	34.04247	65	-39.6397	228.8077
	2 e .00	14.7ecos	31.91858	\%.c00	-111.1442	$140 . e 842$
	28.00	42.57200	25.5E676	\%. 000	-70.6489	155.8929
	32.00	230.900°	31.57273	cos	105.E609	354.6402
	3 c .00	133.44C05	32.53158	025	4.7207	282.1693
	38.00	141.02000°	32.21228	cos	13.8687	268.0833
	48.00	289.680°	31.38271	.cos	145.1675	323.5824
	52.00	27.4 CCDD	30.72310	9	-83.7840	149.5840
	E4.00	43.30800	32.32853	:.cos	-87.2143	187.8303
	57.00	112.02400	32.38488	278	-15.6010	230.7260
	Ee.00	-8.6ces	32.608 <3	$\bigcirc \mathrm{CDO}$	-135.2353	122.0198
	80.00	11.50403	27.2ce <4	${ }^{7} .605$	-95.9221	113.6401
	84.00	$183.2488{ }^{\text {d }}$	29.55253	cos	$48 . \mathrm{C}$ 27	270.8433
	72.00	185.07200°	32.6ecaj	cos	58.1184	314.0266
	81.00	117.8400	32.19242	155	-2.2203	244.1489
	82.00	-76.70009	32.3e870	3.605	-207.4719	43.6558
	8 e .00	-80.91209	23.04282	$1 . C 0 D$	-175.5c95	53.2955
	8 c .00	81.87 CD	31.02708	- 60	-80.5143	134.2683
	91.00	83.11 end	32.34788	$\bigcirc \mathrm{Cog}$	-84.4829	185.7140
	82.00	-72.6003	32.83788	1.600	-202.1337	55.8337
	82.00	182.56ebe ${ }^{*}$	31.81314	cos	83.8852	319.450 .8
	94.00	101.68403	3 S .60517	433	-19.8327	223.4007
	104.00	148.5240°	32.57845	ca3	21.C107	278.0373
	113.00	5.48 CD,	32.12385	$\bigcirc \mathrm{Cos}$	-121.2395	132.1835
	114.00	-94.47end	33.04103	E8B	-214.8135	45.8815
	118.00	-27.33eds	27.28400	- CD	-135.0734	80.4014
	120.00	¢.57200	31.61791	- 000	-112.9351	131.0781
	123.00	127.56203*	32.32902	0.55	. 0275	255.4785
	124.00	-15.34409	31.21880	3. 605	-138.4888	107.8908
	125.00	229.412030	30.88730	CD	104.1380	343.easo
	128.00	139.748030	31.08677	COS	13.1108	281.3861

Tamhane

11) Condition	(J) Cendirion	\qquad	5:d. Error	5 g .	05\% Confidence interval	
					Lewer Bound	Upper Ecund
25.00	10.00	230.02C05	33.62851	cos	87.24018	363.8682
	20.00	87.20003	34.11163	. 823	-37.3714	231.7714
	22.00	-85.28403	34.04347	950	-220.5e77	39.0387
	20.00	-80.50403	$34.34 \mathrm{EBF}^{\text {3 }}$	¢.CDO	-215.2081	54.2011
	28.00	-52.58203	31.14848	P.cas	-175.6839	73.3683
	32.00	134.63eds	33.82259	C42	1.3893	288.2727
	3 e .00	35.7\%JJ	34.61303	*.CDJ	-98. 1325	175.6645
	38.00	45.76 eJ	34.42035	J.coj	-60.0283	181.840 .3
	48.50	174.61е0コ	$33.62 \mathrm{er3}$	003	41.8481	307.2839
	52.00	-67.64403	$33.03 \mathrm{Cg4}$	1.005	-188.1976	62.4888
	E4.00]	-54.9se03	34.52919	$1 . C D D$	-181.1280	$81.258]$
	57.00	16.6CCDO	34.58302	$3 . C 00$	-118.E451	153.1451
	E8.00	-101.87200	34.76138	285	-238.1152	35.3712
	ec.00	-83.zecos	23.78793	$8 \div 7$	-201.3757	34.0557
	2.4.00	87.98403	31.94498	\%. 5	-53.1057	124.0737
	72.00	82.60805	34.68882	697	- 4.7383	227.3653
	21.00	21.30000	34.40179	3.605	-113.2t13	157.8113
	82.00	-174.97200*	34.58 e 48	Cas	-311.4682	-39.E348
	88.00	-158.i7803	31.47387	CO1	-280.4288	-31.6222
	82.50	-33.38800	33.31383	$\therefore \mathrm{CDD}$	-184.8287	88.0537
	91.30	-32.14805	34.54712	-COJ	-183.4305	104.1348
	§2.30	-187.68403	35.00834	. 601	-305.9523	-23.7751
	93.00	97.30403	$34.14 \mathrm{C5B}$. 923	-37.2811	231.8881
	84.00	5.62000	33.70723	${ }^{1} \mathrm{COS}$	-124.0124	137.2524
	$10 \leq 00$	54.2 cojo	34.7 P 422	1. COO	-82.e76.3	191.2883
	113.00	-88.72403	34.32743	. 884	-225.2424	$45 . e 744$
	114.00	-178.74005	35.99718	C0D	-31.8.5001	40.8888
	118.00	-122.60C03	29.65878	. 027	-240.E983	4.8107
	120.00	-80.6520	34.0565	.693	-224.0273	$44 . \mathrm{e} 438$
	123.00	32.28800	34.52971	8.cos	-103.6281	188.6021
	124.00	-110.60205	33.48226	.438	-242.7490	21.6330
	125.00	131.148 JJ	33.2ee5s	.CE1	-. 7849	282.4808
	128.00	43.42403	33.37221	$\square \mathrm{COD}$	-83.1885	175.1545

(i) Condition	(J) Condition	\qquad	Sta. Error	Sig.	85\% Confidence interval	
					Lower Bound	Upper Bound
26.00	18.00	$310.5240{ }^{\text {a }}$	$31.47 \mathrm{C6日}$	000	136.3818	434.8884
	20.00	177.70400°	31.68127	cos	51.5131	303.8040
	22.00	-14.7ecod	31.91253	T.COD	-140.6e42	111.1442
	2 E 00	80.50400	34.34687	- cos	-54.2011	215.2081
	28.00	27.91200	28.51184	1.030	-85.7898	141.8138
	32.00	215.34000°	31.68288	cos	80.3850	340.3150
	3 e .00	115.58003	32.72818	184	-10.4681	247.8181
	32.00	$128.2 e c 03$	32.32025	. 0.59	-1.2288	253.7480
	48.00	255.12000	31.47381	. 000	130.9 eg 9	379.2703
	52.00	12.64000	30.53835	$\checkmark .600$	-102.C015	134.2815
	E4.00	25.54800	32.43612	5.000	-102.3883	153.4843
	57.00	97.30400	32.47214	. 803	-30.7845	225.3925
	58.00	-21.3e800	32.71611	3.000	-150.4185	107.0800
	ec. 00	-3.7ecos	27.32421	3.000	-111.1005	104.78 .89
	64.00	143.42800*	22.67012	000	31.4284	265.5485
	72.30	170.31200°	32.78530	. 000	40.6384	272.684
	81.30	102.4C400	32.30047	E86	-25.0c8s	229.8148
	82.30	-8\% 4 -4e80	32.48508	883	-222.8550	33.7180
	8e.j0	-75.67200	2 B .12234	¢ $£ 85$	-180.7444	$3 \mathrm{B.4084}$
	88.00	47.31000	31.13612	0.000	-75.7172	188.8482
	¢1.30	49.35200	32.45622	1.003	-79.6857	178.3777
	92.00	-87.3ec30	32.04381	880	-217.3107	42.8907
	93.00	177.acead ${ }^{\text {a }}$	32.02213	cos	51.4953	304.1207
	84.00	87.12400	30.918.07	. 844	-34.839J	209.0870
	10400	$134.7 \mathrm{E} 400^{\circ}$	32.6 ¢e. 22	. 024	5.8301	233.6979
	113.00	-6.2ecos	32.23183	¢.CDO	-135.4204	117.6 ed 4
	114.00	-98.23800	33.148 .32	. 803	-220.6878	31.5153
	118.00	-42.0cedo	27.41140	${ }^{9} .000$	-150.2403	80.1483
	120.00	-8.18805	31.92723	3.CDO	-135.1283	118.7603
	123.00	112.79200	32.42e80	. 235	-15.1565	240.7408
	124.00	-30.10400	31.32001	J. 605	-153.e898	93.4805
	125.00	211.65200	31.10850	.cod	85.9358	334.3884
	128.00	123.98eno	31.20184	. 45	.968	247.6871
Tamhane						
(1) Condition		Mean Difference			8556 Confidence Interval	
	iJ) Cendition	[1-J!	3:c. Error	Sig.	Lewer Bound	Upper Bound
28.00	18.00	282.0̄1205	23.16833	C03	171.3451	393.8789
	20.00	149.79203	28.77189	cos	35.2502	253.3338
	22.00	$\rightarrow 2.67200$	28.68075	1.CDS	-15.5.8929	$70 . E 480$
	26.00	52.58200	31.14849	J.COD	-70.3883	175.5839
	20.00	-27.91200	23.51164	$1 . C 0 D$	-141.e132	85.7888
	32.00	187.42000	23.42831	.coj	75.2483	299.8074
	38.00	90.78e0	23.56887	724	-28.0e32	207.5882
	38.00	63.34805	23.13 eg 5	381	-15.6444	213.3404
	48.00	227.20000^{*}	25.18489	CDD	115.654	338.48 .15
	52.00	-15.27203	27.48171	9.CDJ	-123.eq76	03.1538
	E4.00	-2.38.402	2 e 2 ec 3	3.603	-117.88e7	113.1387
	57.00	08.39203	29.30 ¢35	$3 . C 03$	-4.2eg2	195.0532
	E8.50	-8.2ecos	27.57435	$7 . \mathrm{COD}$	-188.cces	87.4489
	ec.00	-31.00900	23.48452	1.603	-123.7209	81.5848
	E4.00	120.57e0s	28.3ee48	cos	17.3587	223.7053
	72.00	142.40cos	29.50524	C01	25.3061	250.4903
	81.20	74.4920J	2 2.11601	.685	-40.4132	139.3972
	82.00	-122.38C03	29.32305	020	-233.1610	-seces
	ge.00	-103.58403	25.58817	. 633	-204.5224	-2.8459
	88.50	18.20405	27.62103	\%.COS	-80.Eees	123.9748
	81.00	23.44403	27.28 cej	-. COS	-85.1427	138.0307
	82.00	-115.27203	23.32 e 82	.c82	-233. $\cos 3$	2.4813
	83.00	143.8ceda	28.8.EE® 1	. 000	35.2180	263.5740
	04.50	53.21203	27.57337	¢.CDS	4.5788	$188.0 C D 8$
	104.00	105.6 ¢\% 20	22.54233	. 183	-0.7EDS	223.4648
	113.00	-37.19200	22.02885	ก.C0]	-151.7e62	77.4112
	114.00	-127.14003	30.05C85	. 0115	-245.7705	-3.5255
	118.00	-75.0080	23.57432	. 823	-183.0133	22.9673
	120.00	-37.tccos	23.7 CC37	3.000	-150.350 1	76.1681
	123.00	84.88000	2 E 2 ec 05	. 885	-30.6251	200.3851
	124.00	-58.05e0]	29.03448	$1 . \mathrm{COD}$	-16.8.e331	52.8011
	125.00	183.74C03 ${ }^{2}$	27.78785	.cos	74.1010	293.3789
	128.00	6s.07E0D	27. 68 CBS	285	-43.8718	208.1232

		Mean Difference			85\% Confid	nce Interval
(3) Condition	(J) Candition	(1-J)	Stic. Error	Sg.	Lower Pound	Upper Bound
32.00	18.00	85.12405	31.12682	733	-27.5937	217.8617
	20.00	-37.63e0s	31.54821	\#.COJ	-182.4e.82	87.1842
	22.00	-230. 0 cos ${ }^{\circ}$	31.57273	000	-354.e402	-105.6E88
	2E.00	-134.63e5a*	33.62258	C42	-283.2727	-1.3683
	2 e .00	-215.34CJ3	31.68288	.cad	-340.3160	-85.2060
	28.00	-187.42803*	25.42831	0	-293.e074	-75.2486
	3 e .00	-88.50cos	32.40109	. 214	-224.4710	31.1518
	38.00	-88.0900	31.97874	. 958	-215.2231	37.0 e 31
	48.00	39.79000	31.12281	t.CDJ	-82.6864	162.E464
	E2.00	-202.7ccdo	30.47222	.ca	-322.9263	-82.4742
	E4.00	-188.76203*	32.08.E85	cos	-310.3677	-83.1203
	57.00	-118.03eds	32.13224	138	-244.7855	8.7135
	58.00	-238.7cen9	32.37778	cos	-364.4277	-108.6983
	8c.00	-219.49e03	28.92954	cod	-324.2304	-112.1616
	e4.20	-86.8E20	23.28790	1.000	-182.4281	48.7341
	72.00	45.02900	32.48 c 81	1. COJ	-173.0780	83.0200
	81.00	-112.93egJ	31.95874	222	-230.0602	13.1282
	82.00	-202.80003	32.15746	CaD	430.6571	-182.6E89
	88.00	-281.012094	29.7 P 233	003	¢04.E814	-177.4423
	88.00	-163.22403	30.72 .453	030	-292.ece4	-48.5916
	01.00	-168.98403	32.11614	cos	-293.eeca	-4.3021
	E2.00	-382.70003*	32.50903	005	- 41.3323	-174.0e7
	93.00	-37.53203	31.87741	3.000	-182.4853	87.4213
	84.00	-123.21e03	30.50.088	0.018	-245.7e73	-7.ee47
	104.00	-80.57e0	32.34857	E98	-209.1803	47.0283
	113.00	-224.52C03	31.88 .847	cos	-355.4105	-85.8294
	114.00	-314.57e0s	32.81340	000	444.6181	-185.1339
	118.00	-267.43e03	27.00789	. 050	-384.0750	-150.7870
	120.00	-224.52e03	31.58 .147	COS	-340.1027	-88.8533
	123.00	-103.54205	32.08 ec 2	E65	-229.1503	24.0 ens
	124.00	-245.44403	30.977E5	c30	-397.6203	-123.2611
	125.00	-3.69809	3 D .75455	$\square .030$	-125.c021	117.2281
	128.00	-01.3620	32.84775	235	-213.0333	30.3283
Tambane						
(1) Condition	(Ji Condition	Nean Difference (1-J)	S:c. Error	Sig.	85\% Confidence Enterval	
					Lower Bound	Upper Bound
38.00	16.00	101.54403	32. 19648	000	64.8254	318.9626
	20.00	52.02403	32.70263	3.c00	-69.9753	188.6233
	22.00	-133.44605	32.53159	. 028	-282.1583	-4.7207
	26.00	-38.17em	34.61302	7 CDJ	-175.5045	83.1525
	2 e .00	-11.5.8e00	32.73819	. 164	-247.8181	10.4681
	28.00	-00.7e80	29.56887	. 724	-207.6ce2	20.0632
	32.00	88.68000	32.40103	. 214	-31.1519	224.4719
	38.00	7.58000	33.02453	- cos	-122.8875	137.8475
	48.00	$138.4400{ }^{\circ}$	32.98 e 47	0.15	0.4332	283.4489
	52.00	-108.04005	31.57381	378	-230.E683	15.6103
	E4.00	-93.73200	33.13800	. 845	-223.8485	37.6828
	67.00	-21.37e0	33.17325	8.000	-152.2208	100.4776
	58.00	-140.04800*	33.41112	. 015	-271.9398	-5.2E84
	ec.jo	-121.63e95	23.12352	011	-233.C817	-10.5603
	84.00	23.60009	30.43561	3.000	-00.2805	149.9680
	72.00	51.63200	3.348181	1.C00	-89.4771	183.7411
	81.00	-18.27600	33.00522	0.000	-146.4072	113.9152
	82.90	-213.74902*	33.18768	000	-344.0670	-82.1681
	88.00	-18436209^{*}	28.94108	cos	-312.EtE1	-76.188日
	e8.00	-71.5e403	31.8 eg 4	1.003	-107.2856	54.1578
	91.00	-70.32403	33.15 ecg	- 0.0	-201.1123	80.4 e 43
	\%2.00	-205.04C00"	33.63400	c.co	-338.7144	-73.2858
	83.00	53.12800	32.73283	\%.000	-82.9902	185.2482
	84.00	-31.55e0	31.65982	¢. COD	-155.4285	83.2185
	104.00	10.08400	33.38283	1.600	-115.6960	147.7 C 40
	113.00	-127.9ecos	32.92815	083	-257.2868	1.8 ecz
	114.00	-217.E1209	33.63348	.cod	-351.3741	-84.4E7B
	118.00	-180.77e09*	23.22844	cos	-272.3121	-4.2398
	120.00	-127.aeeos	32.64604	c5s	-258.8209	. 6248
	123.00	-5.88900	33.13865	-.CDO	-138.ec49	124.8285
	124.00	-149.78409	32.05 E 11	cos	-275.2387	-22.3283
	125.00	92.97200	31.84683	. 872	-32.e365	215.5795
	128.00	5.36900	31.93 ces	¢.COO	-120.e635	131.2e85

(1) Condition	(J) Candition		S:c. Estor	Sip.	855\% Confidence Interval	
					Lower Bound	Upper Bound
38.00	18.00	184.22403*	31.77446	.00	53.8254	309.E020
	20.90	51.44405	32.28420	4.00	-75.6032	178.7612
	22.00	-141.02C0J*	32.21220	COS	-283.0833	-13.eE87
	25.00	- 5.7 Fe 00	34.42 C 35	3.600	-181.E403	8.0 .0283
	28.00	-126.2ecos	32.32025	. 053	-253.7489	1.2283
	28.00	-98.34805	20,33e05	. 381	-213.3404	18.e.444
	32.00	83.08000	31.97874	.956	-37.ces 1	215.2231
	38.00	-7.5900	33.02453	3.000	-137.2475	122.6875
	48.00	123.eecos	31.771 .40	032	3.6334	254.1885
	52.00	- 113.52 CDD	31.34024	. 151	-235.4e35	0.2235
	54.00	-100.71205	32.72516	. 710	-220.767.	28.3733
	57.00	-28.95ed	32.76089	1.000	-158.1227	100.2707
	68.00	-147.82803*	33.00170	. 005	-277.ec62	-17.4805
	ec.00	-128.4te03	27.67 e59	C02	-238.7232	-20.1085
	84.00	22.22800	28.98 .581	\%.COJ	-98.0852	140.5412
	72.00	44.00200	33.08310	\square	-86.4409	174.E50
	81.00	-23.85ed	32.58071	8.000	-152.4114	104.6984
	82.00	-220.72e03	32.78 .550	. 600	-350.6523	-91.4037
	88.00	-201.6320J	22.48 .348	. 000	-319.2787	-85.5853
	28.00	-78.34405	31.44015	. 989	-203.1468	44.8789
	01.00	-77.00403	32.74403	1.C00	-207.0e45	51.2585
	82.00	-213.62C09*	33.22823	.cos	-344.e618	-82.5484
	E3.00	51.5490	32.31487	1.000	-75.9197	178.6157
	84.00	-39.12e00	31.22115	1.000	-102.2976	84.0256
	10.4.00	8.50400	32.97308	1.000	-121.5e01	138.5881
	113.00	-135.54005	32.52275	. 020	-283.2275	-7. 2625
	114.00	-225.4¢edo	33.42921	. 605	-357.3e15	-93.8395
	118.00	-188.3Eeds	27.75282	. 0	-277.959	-53.7E30
	120.00	-135.44802	32.220.93	. 017	-262.5450	-3.3510
	123.00	-13.46805	32.72572	3.00	-142.5500	115.6205
	124.00	-156.3E402	31.62915	. 001	-281.1303	-31.6974
	125.00	$85.3820]$	31.410 .74	. 978	-33.5152	209.2592
	128.00	-2.27203	31.50201	3.c00	-128.6382	121.9842
Tanthane						
(a) Condition		$\begin{aligned} & \text { Mean } \\ & \text { Difference } \\ & (1-j) \end{aligned}$	5:d. Error	58.	85\% Confidence Interval	
	(J) Condition				Lawer Bound	Upper Bound
48.00	12.00	55.46403	30.91297	5.600	-68.5331	177.3411
	20.00	-77.41000	31.42 ebs	3.000	-201.4205	48.6885
	22.00	-209.88C05	31.3 e271	003	-303.E日24	-145.1e76
	25.00	-174.51005*	33.62 e83	cos	-307.2e39	+1.8481
	28.00	-256.12C0J	31.47381	cos	-379.2703	-130.9e9?
	28.00	-227.20003*	23.14489	cos	-333.4813	-115.9E4 ${ }^{\text {¢ }}$
	32.00	-39.790.0	31.12281	1.c03	-182.5454	82.9854
	38.00	-138.44005*	32.98 E 47	. 015	-283.4463	-2.4332
	3 e .00	-128.seco ${ }^{\text {c }}$	31.77140	c32	-254.1883	-3.5334
	62.00	-242.48000'	30.28 ce 1	cos	-381.8481	-123.1138
	64.00	-220.57200*	31.68927	. 63	-355.3e44	-103.7785
	57.00	-157.3ie03	31.92581	cas	-283.7532	-31.8789
	58.00	-278.48809	32.47300	cos	483.4020	-149.5740
	80.00	-259.27e03*	29.68303	cos	-383.8287	-152.8223
	e4.00	-106.63205	22.07135	. 141	-221.3213	8.0673
	72.00	-B4.Ecan	32.25863	. 893	-212.0524	42.4384
	81.00	-152.7t60	31.75125	. 01	-277.9031	-27.4e83
	22.00	-350.59803*	31.56129	cos	-75.e255	-223.5e05
	8e.00	-230.79205	23.58285	cos	-4¢3.4474	-218.1288
	88.00	-205.00405*	30.56815	.c00	-323.5858	-87.4222
	91.00	-20e.7e403	31.90870	cos	-332.e331	-80.8849
	82.00	-342.48603	32.40533	0.5	470.3127	-214.8473
	93.00	-77.3120J	31.48 egog	$\bigcirc .603$	-201.4405	45.8185
	84.00	-187.98em ${ }^{\text {a }}$	30.34387	cos	-287.8801	48.3012
	104.00	-120.35800	32.14382	107	-247.1539	3.4419
	113.00	-284.40cos	31.38155	cos	-389.3;18	-139.4284
	$11 \div 00$	-354.3Eeds	32.61135	. 005	+83.0039	-225.7081
	118.00	-207.21003	26.76209	. 000	$\xrightarrow{4} 02.8772$	-181.5E43
	120.00	-284.30803	31.37151	Cas	-383.CEE1	-140.ee0a
	123.00	-142.32803	31.82 Ec 5	cas	-283.1227	-16.E333
	124.00	-285.22403	30.7 e 365	. 605	-06.5720	-163.8760
	125.00	43.4 ecog	30.53895	9.005	-183.8908	78.9848
	126.00	-131.13203*	30.62276	012	-2E1.8e4 5	-10.2685

(1) Condition	(J) Candition	Wean Difference (1-J)	S:c. Error	Sig.	85\% Confidence Interval		
					Lower Bound	Upper Bound	
52.00	16.00	$297.6840{ }^{\circ}$	32.28381	CDD	178.5052	417.28 .23	
	20.00	185.08.405	30.78867	.cDO	43.5715	298.5585	
	22.00	-27.40CJJ	30.72315	1.CDD	-14.3.6840	83.7840	
	26.00	87.8 840	33.03084	-.C05	-62.4e88	138.1976	
	28.00	-12.54C0J	30.63835	¢.CDS	-134.2815	10.00015	
	28.00	15.27200	$27.481: 1$	1.c00	-83.1635	123.6876	
	32.00	$202.7600{ }^{\circ}$	30.47822	.cos	82.4742	322.9253	
	38.50	105.04005	31.57381	. 378	-18.5183	230. 5883	
	28.00	113.52 CDO	31.14024	. 151	-9.2235	236.4635	
	48.00	2\%2.4800)	$3 \mathrm{~J} .2 \mathrm{cc6} 1$	cas	123.1139	381.8481	
	54.00	12.90805	$31.280 \div 0$	1.600	-110.4112	136.2272	
	57.00	84.68 .405	31.29785	. 981	-38.8C31	20.1311	
	58.00	-34.0080	31.54888	- cos	-159.4728	90.4898	
	e0.00	-15.7eers	25.92827	S.COD	-113.1488	88.5585	
	64.00	135.84803	29.32 c 21	.c.1	23.8940	247.8020	
	72.90	157.57203	31.53510	Co.	32.8700	252.4740	
	21.00	89.7e403	31.11971	. 90	-32.9882	212.5262	
	82.00	-107.0800	31.32375	. 317	-230.8775	$18.4 \mathrm{E}^{15}$	
	86.00	-68.31203	27.2488 .5	563	-189.1782	21.5642	
	88.00	34.47 e0	29.91283	3.cos	-83.5181	152.4881	
	81.00	35.71 eos	31.28031	3.600	-97.8818	159.1138	
	82.00	-105.0ccos	31.72876	. 227	-225.4025	25.4025	
	83.00	185. $\mathrm{sec} \mathrm{S}^{\prime}$	30.63072	C05	43.5489	288.7872	
	84.00	74.48405	29.68237	. 693	-42.Eg94	191.6874	
	104.00	122.12403	31.51682	.c6s	-2.2220	246.4700	
	113.00	-21.92C0]	31.04867	¢ 003	-144.4003	100.6808	
	114.00	-111.67ed	31.9689	. 251	-238.1104	14.3 E84	
	118.00	-54.73end	28.00684	3. C0J	-157.4C57	47.9337	
	120.00	-29.6280	32.73214	9.ces	-143.0575	92.4015	
	123.00	103. 5200	$31.28: 108$.553	-23.1898	223.4738	
	124.00	$\rightarrow 2.7440 \mathrm{~J}$	30.11122	1.000	-101.5201	76.0221	
	125.00	109.91203°	29.88172	. 000	81.1419	316.8821	
	128.00	111.3480	20.97784	118	-6.9007	220.5987	
Tamhane							
(9) Sondition (J) Condirion		Mean Difference (1-J)	S.e. Error	Sig.	65\% Confidence Interyal		
		Lower Bound			Upper Bound		
54.00	18.00		$284.9780{ }^{3}$	31.68232	. CDO	159.1718	410.7804
	20.00	152.56edo	32.40028	C02	24.3608	278.8811	
	22.00	40.30800	32.32853	\%.cod	-187.8203	87.2143	
	26.00	54.9 em	34.5281 .5	9.c00	-61.2680	191.1880	
	2 e .00	-25.54800	32.42e12	1.cos	-153.48<3	102.3883	
	28.00	2.3 2400	22.28543	i.c00	-113.1387	117.8887	
	32.00	189.76203	$32.0 ¢ 685$. 000	63.1883	316.3977	
	36.00	93.13205	33.12800	. 645	-37.E22.8	223.8465	
	38.00	100.71205	32.72516	. 710	-23.3738	220.7978	
	48.00	22日.57200	31.68927	cos	103.7780	355.3844	
	52.00	-12.90.20]	31.2 ecas	3.000	-135.2272	110.4112	
	57.00	71.75 EDD	32.0751 .8	i.cod	-57.9210	201.4338	
	ce. 20	48.9180	33.11520	:.cos	-17\%.E408	83.7088	
	eo.00	-29.70400	27.61181	3.005	-133.5485	81.1415	
	84.00	122.94600°	30.11078	023	4.1317	241.7483	
	72.00	144.76.403*	33. 78 cc 40	COD	13.2188	275.7 CB 1	
	81.00	Ts.8Eeds	32.70E62	1.C03	-62. 1529	205.8 ¢ 48	
	82.00	-120.0160	32.86893	151	-249.7609	2.7589	
	8 se .00	-101.22000	23.51 C 47	2.18	-218.0707	15.e207	
	88.00	21.50800	31.55824	$7 . C 00$	-102.9253	148.6810	
	81.00	22.50800	32.EEes $\overline{5}$	S.COD	-103.8038	152.4185	
	92.00	-112.90800	$33.34 \mathrm{C89}$. 348	-244.423s	18.8075	
	93.00	153.2ecos ${ }^{2}$	32.4307\%	. 02	24.3348	230.1852	
	84.00	81.57 e0s	31.34110	1.600	-62.0ed 1	185.2121	
	104.00	109.21 ED	33.08 ec 5	. 440	-21.2958	230.7270	
	113.00	-34.c2a00	32.53784	1.C0s	-163.5e90	93.8130	
	114.00	-124.78400	33.54128	.117	-257. 0809	7.5225	
	119.00	-87.64400	27.68788	9.CDJ	-175.7839	42.4858	
	120.00	-3ヶ.73ed	32.32709	1.C00	-182.2918	92.8198	
	123.00	87.24403	32.84617	985	42.2854	218.7834	
	124.00	-55.65200	31.74755	1.000	-190.8868	82.5228	
	125.00	183.30403*	31.52 Ecs	000	61.7254	310.4828	
	125.00	gs.44CDJ	31.62088	887	-28.2882	223.1782	

		Mean Difference			65\% Confid	ace Interval
(1) Condition	(i.) Condrion	(1-5)	Ste. Error	Sig.	Lower Eound	Upper Bound
57.00	16.00	213.22000^{*}	31.22885	000	87.2708	338.1861
	20.00	80.40005	32.43e35	8.000	47.6475	208.3475
	22.00	-112.0e400	32.3e.460	. 273	-230.7205	15.6010
	25.00	-16.60000	34.58302	5.000	-153.1451	$110 . E 451$
	28.00	-97.30400	32.47214	נ0.	-225.3925	$30.78 \div 5$
	28.00	-60.39200	$29.30 \in 35$	8.000	-185.CE32	20.2e92
	32.00	118.03800	32.33224	138	-9.7135	244.7855
	3 3 .00	21.37800	33.17325	2.000	-100.4778	152.2289
	28.50	28.95000	32.7ec88	\%.cod	-103.2707	159.1827
	48.00	157.61200	31.92581	col	31.8789	283.7532
	52.00	-84.80400	31.28789	. 681	-209.1311	35.8631
	E4.00	-71.75e00	32.57518	9.000	-201.4238	57.8216
	E2.00	-118.67200	33.150 49	181	-249.4357	12.6817
	80.00	-100.48000	27.85381	. 177	-210.4727	8.5527
	e4.30	51.72400	30.74853	¢.COD	-87.7782	170.1482
	72.00	73.00805	33.23158	1.C00	-59.0765	254.0818
	81.00	5.10000	32.74134	1.COO	-124.0497	134.2467
	82.00	-181.77205	32.93634	.000	-321.e888	-51.8672
	88.00	-172.97e00*	29.64882	cod	-280.6233	-55.Ee87
	88.00	-50.j8805	$31.58 \mathrm{E27}$	\%.cod	-174.2282	74.4522
	81.00	48.94800	32.68402	- Cod	-179.e982	80.8039
	82.00	-184.68400"	33.37 cos	C0d	-318.3179	-53.0101
	93.00	80.50400	32.48878	Ycos	-7.5e34	209.5714
	94.00	-10.78000	31.37839	1.000	-133.9835	113.8035
	104.00	37.48 coj	33.12185	1.000	-83.1812	169.1112
	113.00	-103.58400	32.857373	. 485	-235.4871	22.2681
	114.00	-106.54005	33.57000	.c00	-328.9240	-64.C900
	118.00	-130.40cco	27.92957	cas	-240.7c6.5	-28.0935
	120.00	-106.48200	32.37313	453	-234.1608	$21.2 \mathrm{Ce3}$
	123.00	15.48800	32.57674	¢.CDJ	-114.191.8	145.1278
	124.00	-127.40800	31.78435	. 030	-252.7281	-2.0270
	125.00	114.34800	31.58 .702	. 185	-10.1772	235.8732
	126.00	28.68400	31.65782	+. COH	-98.198.3	151.5863
Tamhane						
(3)Condition	(J) Candition	Mean Difference (1-J)	5:c. Error	S\%.	855\% Confidence Interval	
					Lower Bound	Lepper Bound
\%8.00	16.00	331.68200°	32.17802	000	204.8882	453.8179
	20.00	188.07209	32.07 EEB	. 000	70.1639	327.9801
	22.00	8.80005	32.60.43	i.cos	-122.0t99	135.2358
	28.00	101.67200	34.78138	285	-35.3712	239.1152
	28.00	21.38805	32.71511	I.COD	-107.egod	150.4180
	28.00	48.28005	29.57435	1.c00	-87.4483	186.0088
	32.00	$238.7080{ }^{\circ}$	32.37778	.c00	103.8983	354.4277
	36.00	140.04800	33.41112	01.8	B. 2584	271.8368
	38.00	147.82eD3	33.00170	cas	17.4503	277.2052
	48.00	278.48800°	32.17300	cas	148.5740	403.4020
	E2.00	34.00803	31.54889	icas	-90.4E85	158.4728
	54.00	48.91000	33.11520	$1 . \mathrm{CaO}$	-83.7C88	177.6408
	67.00	118.8720	33.85049	. 181	-12.0817	248.4367
	ec.00	18.21200		1.000	-82.9283	128.3609
	e4.00	183.65edo	30.41109	cas	49.8885	289.8655
	72.00	181.68 cas	33.40805	cas	59.8688	323.7001
	81.00	123.77200	32.98233	.104	-5.3289	253.8729
	82.00	-73.10cod	33.17482	$\bigcirc .605$	-203.980	57.7000
	88.00	-54.30400	23.91592	- CDS	-172.3883	83.7589
	88.00	88.48 .400	31.64863	\ldots	-57.1435	184.1118
	41.00	98.72400	33.12380	-cno	-80.6743	200.4223
	92.00	-85.98200	33.61243	1.003	-185.5772	88.5838
	$\underline{62.00}$	182.17805	32.76880	.000	70.1488	328.2031
	84.50	108.48200	31.62975	287	-15.2863	233.2703
	16.400	158.13203	33.30020	002	24.5413	237.7227
	113.00	12.08000	32.5: 521	\bigcirc	-117.7483	141.8243
	114.00	-77.8eend	33.51113	1.000	-211.2381	55.5021
	118.00	-20.72200D	29.21189	$\bigcirc .000$	-132.1675	80.7015
	120.00	12.18cto	32.61e80	3.000	-119.4.12	140.9412
	123.00	134.88003	33.11575	033	3.5332	264.7883
	124.00	-8.73e0	32.02254	9.000	-135.C675	117.8255
	125.00	233.02003	31.51880	CDD	107.Ecs 3	35.5337
	128.00	145.35003	31.90703	0.84	19.4881	271.2232

Tamhane

(1) Condition	(J) Condirion	Mean Difference (1-J)	Saci. Error	Sig.	85\% Confidence Interval	
					Lewer Bound	Upper Bound
e0.00	18.00	$313.5800{ }^{\circ}$	$25.68 \mathrm{eg4}$	000	208.3110	410.6481
	20.00	180.08c03	27.28188	cos	73.0847	298.8353
	22.00	-11.60403	27.26 .444	1.cod	-118.6401	B5.8321
	26.00	83.58 COJ	23.7876 .3	. 647	-34.0557	201.3757
	20.00	3.15eos	27.32421	3.COD	-104.78.95	111.1008
	28.00	31.02003	23.48452	$1 . \mathrm{Caj}$	-81.5848	123.7203
	32.00	215.49003	26.62854	cas	112.1016	324.8304
	38.00	121.83e03	23.1e352	. 011	10.8603	233.0817
	38.00	123.41203	27.67 e 59	CD2	20.1098	238.7232
	42.90	255.27eJJ*	28.682005	CDO	152.9223	383.8297
	52.00	15.7ceds	25.52827	1.CDJ	-85.5585	118.1488
	54.00	23.76403	27.61181	-.CDD	-81.1415	139.6485
	Er.00	10 J .4 ecsj	27.65381	. 177	-8.5527	210.4727
	E8.90	-18.21209	23.13888	-.CDJ	-122.3E08	82.8288
	e.4.00	151.54409°	24.52889	ces	54.8458	248.4422
	72.50	173.48e03	23.22221	cod	81.8488	284.6872
	21.00	105.secd	27.58345	. 683	-3.6E52	214.7752
	22.00	-81.31203	27.68289	473	-201.4484	18.8164
	9e. 50	-72.51235	23.91211	782	-188.8878	21.8358
	88.00	65.27205	28.29771	-.cas	-53.Eç8	154.0533
	E1.00	51.51203	27.82405	$\square .603$	-58.4221	181.4481
	92.00	-84.26.403	23.46204	. 834	-188.3684	27.9814
	93.00	180.92403*	27.32785	cos	73.6447	238.8833
	94.90	95.28005	28.02E43	275	-12.4597	193.187
	104.00	137.926as	25.90209	C01	28.8148	248.8251
	113.00	-8.12403	27.57338	3.c00	-115.0205	102.7725
	114.00	-80.08005	23.326. 1	285	-200.2107	17.0607
	118.00	-38.94003	21.74350	3.000	-124.7082	48.8282
	120.00	-8.0320]	27.21659	-. 000	-113 EC85	101.4445
	123.00	115.94803 ${ }^{\text {a }}$	27.51247	021	0.çe日	225.7961
	124.00	-28.94905	26.51347	\% 000	-131e274	77.73 .14
	125.00	214.60805	20.25253	CDJ	111.1683	318.449 T
	128.00	127.14403	26.36169	CO1	$23.6 e 84$	231.2188

Tamhane

(a) Condition	[.Jl Condition	\qquad	Stc. Error	Sig.	9556 Confidence lriterval	
					Lower Bound	Upper Bound
8. 80	18.00	192.03e00 ${ }^{2}$	23.07488	. 000	47.3335	278.7385
	20.00	28.21205	29.53102	1.600	-87.eg04	146.1224
	22.00	-183.24800	23.58263	. 050	-279.8433	-6.eE27
	26.50	-07.98.403	31.94488	- 600	-194.0737	53.1057
	2 e .00	-143.48900	29.67010	0.00	-285.5488	-31.4284
	28.00	-120.57ens	28.8eess	. 603	-223.7953	-17.3587
	32.00	68.85200	29.26780	0.003	$48.73 \leq 1$	182.4381
	36.00	-29.80805	30.43E91	S.C00	-149.9ced	95.2800
	38.00	-22.22800	29.98605	-.c00	-140.E412	88.0852
	42.00	109.63 .295	29.07138	141	-8.0.573	221.3213
	52.00	-135.84800	28.38021	. 01	-247.8020	-23.24*0
	E.4.00	-122.94003	30.11075	. 629	-241.7483	-4.1317
	E7.00	-51.98400	30.14855	i.cos	-170.1482	87.7782
	88.90	-189.6Eega*	3.41109	cos	-288.855	49.8585
	ec.00	-151.64403	$24.52 \mathrm{E89}$	cos	-248.4422	-54.8458
	72.00	$21.6240 J$	30.488:9	7.000	-88.5283	142.1743
	8.1 .00	+6.08.40J	29.9e458	3.cos	-104.3126	72.1448
	82.00	-242.e6eds	30.75e43	cas	-365.0247	-123.8e73
	8e.00	-224.38c00	28.56180	000	-32.8.8963	-119.4237
	8 e .00	-101.37200	23.70997	. 224	-214.2287	11.8827
	91.00	-103.13200	30.13133	. 410	-219.0210	13.7578
	92.00	-235.04800*	30.65677	.cos	-355.8223	-114.8737
	83.00	29.32 CDJ	29.5 e 434	1.CDO	-87.7184	148.3584
	94.00	-91.30400	28.48299	3.603	-173.e991	50.9411
	104.00	-13.72403	30.38.05	3.000	-13.3.eca2	108.1522
	113.00	-157.78805*	23.68083	cos	-275.7037	-32.8323
	114.00	-247.j2403	33.67449	cos	-38.8.E.24	-125.8.55
	118.00	-180.59403	24.51 ¢87	cos	-287.7185	-83.4484
	120.00	-157.67e03	29.58188	cos	-2743083	-1.0437
	123.00	-35.68e00	30.11137	i. 000	-154.6687	83.1147
	124.00	-179.5820 ${ }^{\circ}$	29.91683	coo	-292.8855	-84.6185
	125.00	6.3.14403	25.57 Cl 7	1.605	+10.ee32	176.2812
	128.00	-24.5CCJD	23.77668	1.CDS	-133.0227	82.0227

(i) Condition	(J) Cendition	\qquad	Ste. Error	5 F 8	85\% Confidence Interval	
					Lewer Bound	Upper Bound
72.00	12.00	140.21203 ${ }^{1}$	32.2E859	. 008	12.9E57	267.4883
	20.00	7.39205	32.78187	8.000	-121.8.411	138.8251
	22.00	-185.07203	32.66090	. 000	-314.0259	-50.1184
	25.00	-89.808	34.ze8eว	. 987	-227.3E53	47.7393
	2 e .00	-179.31203	32.78730	coso	-283.8645	~ 0.9384
	28.00	-142.40003	29.3 e 524	. 0.1	-259.48]	-25.3081
	32.00	45.02803	$32.48 \mathrm{cb1}$	T.COO	-83.0200	173.0780
	38.00	-51.63203	33.48161	$\cdots \mathrm{COO}$	-183.7411	80.4771
	38.00	+4.05203	3.3 .02318	1.000	-174.6ED	89.4488
	48.00	84.60805	32.25efs	. 693	-2.4284	212.6524
	62.00	-157.67203*	$31.03{ }^{3} 10$. 005	-282.4740	-32.8700
	E4.00	-144.72.403	33.19040	cas	-275.7C01	-13.8189
	67.00	-73.0080	3.3 .23150	3.000	-204.C815	5.3 .0758
	58.00	-181.68C03*	$33.48 \mathrm{ED5}$	cos	-323.7c01	-59.8669
	80.30	-173.4e835	28.23221	cos	-284.9872	-81.8488
	84.00	-21.62403	30.48949	8.600	-142.1743	83.5283
	81.00	-87.90903	33.08388	C.cod	-198.3307	82.5147
	82.00	-284.78.0.5	33.25588	cod	-395.6503	-133.8001
	88.00	-245.98403	30.00582	. 000	-384.4037	-127.Ee43
	88.50	-123.7¢EaJ	$31.93 \mathrm{C35}$. 070	-249.1678	2.7 e 58
	81.00	-121.958a3	3.21508	138	-252.8740	9.ce28
	82.00	-257.67205	3.3 .54244	.000	-380.5733	-124.7707
	¢3.00	7.48003	32.78201	3.000	-121.8658	130.8475
	¢ 4.00	-63.78209	31.71476	. 684	-203.3023	41.8288
	104.00	-35.54805	33.44081	1.000	-107.4687	88.2807
	113.00	-170.59203	32.50 eg 1	. 000	-309.7E08	49.4331
	114.00	-289.54803*	33.6 cces	.c.j	$\rightarrow 03.2318$	-135.8e44
	\$18.00	-212.40905	25.35 ceg	. 60	-324.2183	-100.6ge2
	120.00	-170.50c39	32.65634	.cos	-305.48.60	-50.E131
	123.00	-57.52CJ	33.78295	9.cos	-185.4873	73.4273
	124.00	-209.41e09	32.11949	. 005	-327.1095	-73.7225
	125.00	41.34 COD	31.90141	$\triangle \mathrm{CDO}$	-84.ECB!	187.1881
	126.00	48.3240	31.98127	3.600	-172.5253	78.8773
Tamhane						
(1) Condition		ม) 2ean Difference			95\% Confidence Interval	
	(J) Condition	(1-J)	Sxd. Error	3 g \%	Lower Eound	Upper Eound
81.00	16.00	203.12000^{*}	31.7E433	. 600	82.8608	3.33.3781
	20.00	75.30000	32.26440	$1 . \mathrm{COD}$	-61.9ego	202.6 e 00
	22.00	-117.0440	32.19242	. 155	-244.1489	9.2208
	25.30	-21.9000	34.40179	3.cDo	-157.e113	113.8113
	2 e .00	-102.40403	32.3 CC 47	688	-228.8149	25.0089
	2 e .00	-74.48203	23.:1601	589	-188. 2872	40.4132
	32.00	112.92 ed	31.95874	. 225	-13.1282	239.0002
	36.00	18.27e0s	33.00522	4.000	-113.6152	148.4872
	38.00	23.85eJ	$32.5 ¢ \mathrm{C} 71$: Cod	-114.8.894	1.52 .4114
	48.00	152.71009	31.76129	. 201	27.4689	277.8831
	E2.00	-88.7e403	31.11971	E00	-212.5262	32.9892
	54.00	-70.65e00	32.70582	1.CDD	-205.8e48	52.1528
	57.00	-5.jcca	32.74134	1.CDJ	-134.2467	124.0497
	58.00	-123.77200	32.98233	. 104	-253.4729	8.3289
	60.50	-105.5ecos	27.66327	. 083	-214.7762	$3 . \operatorname{ess} 2$
	8.4 .00	40.08400	27.9 e 453	- 1.000	-72.1446	184.3128
	72.00	67.90900	33.0 e 289	8.000	-82.5147	188.3307
	8.2.00	-189.07203	$32.76 e 02$	000	-323.1194	-97.8248
	8.800	-178.07e03	23.4 e 181	cos	-284.3368	-81.8154
	88.00	-55.2¢80	31.41981	$3 . C 00$	-170.2305	88.6545
	\$1.00	-54.0480	32.72455	1.cos	-193.1315	75.0355
	92.00	-182.78400	33.20888	cos	-320.7698	-59.7e82
	83.00	75.40405	32.28503	- cos	-51.E855	202.7638
	84.00	-15.2e003	31.26 ces	- cos	-139.2ens	107.0008
	104.00	32.3ecos	32.45367	$3 . C 50$	-87.e277	162.3477
	113.00	-111.68405	32.50312	. 302	-239.2930	16.52E\%
	114.00	-201.54C03	33.41089	cod	-333.4302	-898488
	118.00	-144.5C00コ	27.72979	caj	-2540113	-34.8887
	120.00	-111.58200	32.26083	278	-239.e.107	15.4287
	123.00	10.38900	32.70e19	0.605	-113.e230	130.3960
	124.00	-132.50205	31.50e94	. 013	-257.1947	-7.8213
	125.00	113.24800	31.36037	. 284	-14.5787	233.6747
	128.00	21.52400	31.48 .171	7. 000	-102.e.020	145.7700

(1) Condjion	(J) Cendition.	Mean Difference ($1-3)$	Sic. Error	3 g.	95\% Confidence Interval	
					Lewer Bound	Upper Bound
82.00	1 e .00	$404.9820{ }^{\circ}$	31.95432	000	2798428	531.6414
	20.00	272.77205	32.40133	000	144.1259	400.2181
	22.00	73.76800	32.38970	1.600	-48.0.68	207.4719
	25.00	174.97209*	34.58 e 48	000	3B.E348	311.4082
	28.00	94.4e800	32.497 J	. 883	-33.7100	222.8050
	28.00	122.38005*	20.33300	020	9.ec8s	233.1 E1D
	32.00	309.600^{-1}	32.15740	.0n3	132.9588	438.6571
	2 e .00	$213.1480{ }^{\circ}$	33.19505	. 000	82.1681	344.0878
	28.00	220.72805	32.78650	cos	91.4037	350.0523
	48.20	$349.58 \mathrm{e} 5^{1}$	31.95127	cos	223.5505	475.8255
	62.00	107.1080	31.32375	.315	-18.4818	230.8778
	64.00	120.01805	32.68883	151	-9.7E83	249.7809
	67.00	191.77203	32.93534	cos	31.8572	321.8885
	68.00	73.10c0j	33.17482	${ }^{3} . \mathrm{CDD}$	-57.7e0j	203.9800
	80.00	61.31200	27.68299	473	-18.8184	201.4404
	e4.00	242.95800°	30.37 e 43	000	123.8873	382.0245
	72.00	284.78609	33.26e\%s	cos	133.6001	395.6590
	81.00	106.37205*	32.7ecde	.005	87.0248	320.1104
	8. 0 00	13.7eed	20.67725	- 000	-98.3197	135.9117
	88.00	$141.5840{ }^{\circ}$	31.62192	. 005	15.8423	288.3257
	81.00	142.62409	32.81888	0.00	12.975	272.6730
	92.00	7.1680	33.40027	1.cid	-124.e415	138.8575
	82.00	273.27609	32.48175	CDS	144.1100	405.4420
	84.00	181.58205*	31.46420	coo	57.7083	305.4777
	104.00	228.23203 ${ }^{\circ}$	33.14 e 42	000	88.4844	359.9788
	113.00	8.5.1880	32.69e53	595	43.783 J	214.1880
	114.00	-4.76005	$33.6 \mathrm{CC22}$	9.000	-137.307 1	127.7711
	118.00	52.3720	27.95957	1.000	-5.5.4488	182.7838
	120.00	$85.28 \mathrm{C0D}$	32.38822	¢03	- 2.5174	213.6774
	123.00	207.20003	32.90630	000	77.4830	337.6370
	124.00	84.3 e 40 D	31.6 cg 84	3.000	-81.1168	199.8449
	125.00	309.12009	31.59293	ס08	151.4833	430.7487
	128.00	218.4609.	31.82342	00	83.4725	343.4395
Tamhane						
(6) Condition		Mean Difference			95\% Confidence Interval	
	(Si Condition	(1-J)	Sic. Error	Sig.	Lower Eound	Upper Bound
88.00	18.00	388.19800°	29.558 .28	000	273.5271	498.248
	20.00	253.37 e05*	20.12249	000	138.4817	385.2903
	22.00	80.91200	23.04282	0.000	-53.eas5	175.ec95
	25.00	156.87e00	31.47387	0.1	31.9222	280.4298
	2 e .00	75.67200	22.12234	. 983	-38.4C04	190.74:4
	28.00	103.58400*	25.58517	033	2.6458	204.5224
	22.00	201.01200°	23.78332	cos	177.4428	404.6814
	3 e .00	$184.3620{ }^{4}$	23.94108	cos	73.1888	312.6151
	29.00	201.93200°	23.42348	.cos	85.5953	318.2787
	48.00	330.79200°	23.55288	. 000	218.1389	443.4474
	52.00	89.31200	27.64885	E88	-21.EE42	108.1782
	54.00	101.22000	28.61047	. 318	-15.8207	218.0707
	57.00	172.97e00	23.64882	000	$55.6 \mathrm{eg7}$	280.9833
	58.90	54.30400	29.91582	$4 . \mathrm{cos}$	-83.7E89	172.3.e日
	e0.00	72.51009	$23.9+311$. 762	-21.8356	105.8670
	24.00	224.1ecos	26.5E18	. 000	119.4237	328.e9e3
	72.00	245.98403	30.00583	. 000	127.5 e 43	304.4037
	81.00	$175.07 \mathrm{ED}{ }^{\text {1 }}$	20.46181	cos	61.8154	284.3385
	82.90	-18.76eod	29.37725	1.608	-135.8117	8.8 .3197
	88.00	122.7erod	29.8231	009	11.8 EE 2	233.9803
	81.00	124.02800'	23.63138	018	7.0843	240.6817
	82.00	-11.88805	30. $\mathrm{ice54}$	-.C00	-130.7425	107.3285
	$\underline{\$ 2.00}$	253.48cos	23.1Eอ38	. 60	138.4312	368.6289
	84.00	182.76e0s	27.93931	.cas	E2.5710	273.0204
	10\%.00	210.43095	22.68422	cos	92.4980	323.3734
	113.00	88.36200	23.38 e 5	1.000	42.5704	182.3E44
	114.00	-23.50403	30.38878	1.600	-143.4973	$88.3 \mathrm{ea3}$
	118.00	33.57600	24.00131	3.609	-81.1213	129.2733
	120.00	83.42400	23.005212	\%coid	48.1511	181.1181
	123.00	188.44.403	23.51103	.cas	71.4100	305.3171
	124.00	-5.5eeds	28.36449	1. 600	-65.4E07	157.5657
	125.00	$287.3240{ }^{\circ}$	23.15103	cos	178.2811	388.3868
	128.00	188. Becoj	23.25278	coo	88.1833	311.1282

(d) Condition	4.J) Cardition	\qquad	Sid. Error	St.	65\% Confidence Interval	
					Lewer Bound	Upper Bound
-8.00	10.90	$283.4080{ }^{\circ}$	30.57232	. 00	142.8137	394.0023
	20.00	135.5e903*	31.30187	. 013	7.9023	253.2737
	22.00	-01.67e0	31.02702	9.C0J	-184.2ee3	ED.E143
	25.00	33.32205	33.31383	3.003	-88.0537	164.2287
	28.00	47.11005	31.3810	4.000	-100.9492	75.7172
	28.00	-18.20.403	25.62:09	9.cos	-128.6748	60.5868
	32.00	185.22400°	30.79453	cos	48.7818	258.6584
	20.00	71.584 DJ	$31.0 \mathrm{ecg4}$	0.005	-54.1578	197.2858
	20.20	7.94403	31.44 Cl 15	.982	-44.8789	233.1689
	48.20	209.00.403	$30.5 e 515$	cos	87.4222	329.5859
	52.00	-34.47803	27.91283	-.coj	-152.4e81	83.5181
	54.20	-21.5ecdj	31.55828	-.C00	-148.0619	102.9258
	57.00	50.3eed.	$31.56 \mathrm{C}^{27}$	-.cos	-74.4822	174.8282
	Ee.00	-68.48.40J	31.64593	1.003	-104.1118	57.1438
	eg.00	-50.27203	28.28 .771	3.C0s	-154.0638	53.6088
	E4.00	101.3720]	28.70897	. 224	-11.8827	214.2287
	72.00	123.78683	31.82038	080	-2.7858	248.1578
	et.00	55.22800	31.41981	3.003	-88.e545	178.2305
	82.90	-141.58403	31.82192	C05	-288. 3257	-19.8.423
	2e.00	-122.72903	28.58381	cca	-233.8908	-11.6852
	51.00	1.24005	31.57889	1.003	-123.3315	125.8115
	92.00	-134.47EDJ	32.08 ces	. 019	-281.c325	-7.8185
	83.00	130.68209	31.13381	. 013	7.8808	253.6032
	84.00	40.0cen	29.99 ers	3.c03	-7.3.3181	158.3321
	104.00	87.04800	31.61824	. 885	-37.2e24	213.1584
	113.00	-50.36200	31.34935	9.005	-180.6E99	07.2670
	114.00	-146.3E203*	32.28874	C04	-273.7324	-19.9718
	118.00	-88.2120J	28.38787	. 354	-183.3C81	14.8821
	120.00	-E8.3040J	31.03598	9.005	-175.7284	95.1214
	123.00	85.67800	31.55884	- 003	-59.8202	120.1722
	124.00	.77.22003	310.42129	. 985	-167.2182	42.7782
	125.00	$184.53 \mathrm{en}{ }^{\circ}$	30.50413	cos	45.4340	$283 . \mathrm{e} 280$
	120.00	76.67209	30.28809	889	-2.2045	180.3485

Tamhane

(1) Sondition	iJ) Cardizion	\qquad Difference (I-J)	S:c. Error	S:g.	85\% Confidence Interval	
					Lower Eound	Upper Eound
	18.00	282.1080°	34.91173	000	136.2888	383.0491
	20.00	129.34003*	32.41841	042	1.4874	257.2288
	22.00	-63.71eD	32.34789	4.005	-180.7140	64.4820
	25.50	32.14200	34.54712	T.CDO	-104.1346	168.4308
	20.00	48.36 CD	32.48 E 22	- 0.000	-176.3777	78.8667
	28.00	-20.44400	23.28 .80	- C0D	-136.0307	65.1427
	32.00	185.98.403	32.31 E 14	CDO	40.3021	293.8650
	3 e .00	70.32403	33.5 Eera	3 COD	-80.4e43	201.1123
	38.00	77.90400	32.74408	3.603	-51.2E85	207.0245
	48.00	203.7.403	31.90870	005	02.88 .88	332.6331
	E2.00	-35.71200	31.28031	-cos	-159.1139	87.e8ts
	54.00	-22.60803	32.65847	3 COD	-152.4185	108.8038
	57.00	49.94803	32.68402	- 000	-80.8038	$178 . \mathrm{ec}$ ¢9
	58.00	-68.72400	33.12385	-	-205.4223	0, 9743
	80.00	-51.51205	27.63405	7.603	-181.4481	58.4221
	84.00	100.13205	35.13133	. 416	-18.7678	210.0219
	72.00	121.geed	33.21503	138	-0.ce26	252.4748
	81.00	54.04200	32.72453	5.085	-75.0355	133.1315
	82.00	-142.82403	32.91865	010	-272.6730	-12.9750
	86.00	-124.02800	29.63139	019	-240.6e17	-7.0843
	88.00	-1.24003	31.57888	7.603	-125.8115	123.3315
	c2.00	-135.71e03	33.35853	035	-267.30ED	-4.1270
	E3:00	128.45209	32.448187	042	1.4514	257.45.23
	84.00	35.7eedo	31.3 ec 85	J.COD	-04.8482	152.48 .22
	104.00	88.4Cedo	33.10637	. 865	-44.1777	216.9837
	113.00	-57.03e00	32.6Ee91	-.C0J	-188.4623	71.1808
	114.00	-147.58205	33.55972	c07	-270.6715	-15.2125
	118.00	-00.45205	27.90880	. 514	-20J.e982	10.7782
	120.00	-57.54403	32.35821	- 3.00	-185.17E5	70.0876
	123.00	04.42 edj	32.60503	\%.CDJ	-65.1778	194.6495
	124.00	-78.4ecos	$31.7 \mathrm{C708}$	3.000	-203.7717	46.8517
	12 E .00	103.2ce0	31.54881	C00	38.8397	237.7623
	128.00	75.53200	31.64047	$4 . C 03$	- 4.1817	$200.44 E 7$

(i) Condition	\Ji Condition	Mean Difference ($1-$ - $)$	S:ci. Error	Sig.	95\% Confidence Interval	
					Lewer Eound	Upper Bound
92.00	18.50	397.68400°	32.46832	. 003	270.0385	525.7285
	20.00	285.08400°	32.90834	COJ	135.2522	384.8758
	22.00	72.60000	32.62768	$3 . \mathrm{COJ}$	-58.9337	202.1337
	2 E .00	167.0e400	35.00 e 34	col	22.7751	305.8528
	2 e .05	87.3ecaj	32.94381	cej	- 42.6907	217.3107
	28.30	115.27200	20.82 eg ?	CED	-2.4813	233.0053
	32.00	202.70c00*	32.60 .28 .3	COD	174.0077	431.3323
	$3 \times .00$	$208.04000{ }^{\circ}$	33.63490	.coj	73.3 e 58	338.7144
	38.00	213.62000°	33.22823	.cos	82.5484	344.e918
	48.00	$3 \leqslant 2.48 \mathrm{coD}^{\circ}$	32.40533	-cas	214.8473	470.3127
	52.00	100.00000	31.78876	. 827	-25.4025	225.4025
	E4.50	112.90800	33.34085	. 348	-18.6078	244.4233
	E7.00	184.38400*	33.37 ED	.cas	53.0101	316.3179
	58.30	85.85200	33.61243	9.cos	-83.5839	198.5778
	ec.00	84.20400	23.40204	. 834	-27.9814	189.3884
	e4.00	$235.5480{ }^{\circ}$	30.65677	cos	114.8737	359.8223
	72.00	257.67200°	33.64244	.cos	124.7707	320.5733
	9.1.00	190.76400*	33.20888	cas	53.7882	320.7E6S
	82.00	-7.0000	33.40 C 27	-. 605	-139.8675	124.E415
	88.00	11.68808	30.1 E554	2.c0s	-107.3665	130.7425
	88.00	134.47eds	32.08 cez	. 018	7.9185	231.0325
	81.00	135.71e00*	33.3585 .3	035	4.1270	287.3050
	83.90	285.10800	32.93834	cod	135.2381	385.0678
	84.00	174.48.400	31.8 ecd	. 005	45.7703	300.1977
	104.00	222.12400*	33.58431	. 000	89.8490	$354 . E 890$
	113.00	73.08000	33.14233	4.609	-52.6es3	208.8133
	114.00	-11.87ed	34.03227	1.000	-146.1179	122.3868
	118.00	45.28400	28.47e35	- Coj	-97.2182	1.57 .7472
	120.00	78.17200	32.84808	9.COJ	-51.3847	207.7387
	123.00	203.15200	35.34151	.cos	83.8341	$331 . \mathrm{eege}$
	124.00	57.28 eod	32.2 ecar	- Cos	-70.0285	184.2405
	126.00	288.01203	32.05180	Cas	172.6e87	425.4553
	128.00	211.34800	32.44124	0.3	84.5033	335.1427
Tamhane						
(3) Condition		Mean Difference			85\% Confitence Intersal	
	iJi Condition	(1-5)	Stc. Error	Sig.	Lewer Bound	Upper Bound
G3.00	18.00	132.71203 ${ }^{2}$	31.47117	018	6.5754	258.8588
	2C. 00	-. 10405	31.98 ¢84	- COJ	-128.2735	120.cees
	22.00	-182.56803*	31.91314	cos	-315.4503	-85.8852
	25.00	-97.30400	34.i4C5.	923	-231.9881	37.3811
	2 e .00	-177.00903*	32.02213	000	-304 1207	-51.46E3
	28.00	-149.68eca	29.60581	000	$-283.57<0$	-38.2180
	32.00	37.52205	31.67741	$\therefore \mathrm{Cas}$	-97.4213	152.4853
	36.00	-58.12805	32.73283	- 000	-198.2482	89.9802
	32.00	-51.5480	32.31487	1.003	-179.015	75.8187
	48.00	77.31200	31.48008	4.C00	46.810 .5	201.4405
	52.00	-185.16805*	30.82072	cos	-288.7872	43.5488
	¢4.00	-152.2ecos*	32.43077	C02	-280.1852	-24.3248
	E7.00	-80.50403	32.46 .678	1.600	-203.5714	47.5 e 34
	E8.00	-189.17009*	32.76 CBD	cos	-325.2031	-70.1488
	20.00	-180.9e405	27.32795	cos	-285.2833	-73.6447
	e4.00	-28.32C00	27.6 e.434	$\bigcirc \mathrm{COD}$	-149.3684	87.7184
	72.00	-7.46ead	32.78201	$3 . C D 0$	-135.2478	121.8558
	81.00	-75.40405	32.28503	f.Cas	-202.7935	51.9856
	82.00	-272.27e0j	32.48175	cos	409.4420	-144.1700
	ع6.00	-263.48C05	20.15838	cos	-385.E288	-13.5.4312
	98.00	-130.6820. ${ }^{\text {a }}$	31.12381	0.18	-253.6032	-7.8808
	81.00	-120.46200	32.44887	0.42	-257.4626	-1.4514
	E2:00	-265.jeaco	32.932 .34	C00	-385.c¢78	-135.2381
	84.00	-80.6e403	35.91245	881	-212.e2<3	$31.2 \overline{51} 9$
	104.00	-3.04405	32.68C60	- 600	-171.8E89	8.5 .9288
	113.00	-187.02903	32.22 e 54	003	-314.2071	-52.8e88
	114.00	-277.04400*	33.14107	cso	407.7752	-1ب5.3123
	118.00	-219.90409	27.40507	cos	-323.1231	-111.e848
	120.00	-183.99000*	31.92178	. 030	-312.9129	-81.0781
	123.00	-65.01809	32.43 .133	$7 . \mathrm{CDJ}$	-182.9434	E2.el14
	124.00	-207.91209*	31.32448	000	-331.474 4	-84.3483
	125.00	33.84405	31.10261	3.000	-89.8ED3	158.6383
	126.90	-53.62005	31.jecat	3 cod	-176.8771	82.2371

（1）Condition	（J）Cendition	\qquad	5：d．Efrar	Sig．	055\％Confidence Interval	
					Lower Bound	Upper Bound
84.00	18.00	$223.4000{ }^{-1}$	30.34707	001	103.6033	343.1067
	20.00	03.58000	30.88 .048	861	－31．2344	212.38 .44
	22.00	－101．88400	30.60517	43.3	－223．4007	18.8327
	2 E .00	－8．62009	33.90723	－cco	－137．2524	124.0124
	2 e .00	－87．12400	30.918 .07	．ect	－203．c870	34.8300
	28.00	－58．21200	27.57337	3.000	－189．ccos	29.5789
	32.20	129.21600°	$30.58 \mathrm{C89}$	015	7．eect 7	249.7673
	3 e .00	31.55000	31.65382	i．cod	－63．3189	158.4289
	38.00	38.12800	31.22118	1.003	－84．0253	182.2878
	42.00	187．95e09	30.34387	． 000	49.3019	297.6831
	\％2．00	－74．48400	20.68237	． 802	－101．5674	42．5c84
	E4．00	－91．57e0	31.34110	$\bigcirc 000$	－185．2121	$62 . c e d 1$
	57.00	10.58000	31.37838	$8 . C 0 J$	－113．ec35	133.9635
	52.00	－109．48200	31.62975	． 207	－233．2703	16.2883
	ec． 00	－80．2e000	28．026＜0	． 275	－163．6187	12.4687
	e4．00	51.30400	28.48 ces	1.000	－50．8411	173．ee日 1
	72.90	83.58800	31.71476	． 684	－41．8283	203．3023
	81.30	15.28000	31.20088	3．COD	－107．8603	138.3 008
	82.50	－181．58203＊	31.46423	cas	－305．4777	－57．7C83
	8 e .00	－182．79eds	27.93931	cos	－273．0204	－52．E716
	88.00	40.00200	29.98 ec 8	8.000	－153．2321	73.3101
	81.00	－38．76800	31.3 ecss	3.000	－182．4822	84.8482
	82.00	－174．4840J	$31.8 \mathrm{eej3}$	．cos	－303．1877	－43．7703
	83.50	93．92400	30.91245	881	－31．2E69	212.6248
	104.00	47.64 CJJ	31.59885	1.005	－77．0200	172．3000
	113.00	－88．4040	31.12972	． 887	－213．2033	20.3550
	114.00	－188．3ec00	32.07655	． 03	－312．6034	－52．8186
	118．00	－120．22005	28.16047	cal	－232．2745	－23．7065
	120.00	－88．31200	30.61413	C52	－217．8e41	25.2401
	123.00	25.5 cos	31.34182	3.030	－87．9704	149.3584
	124．00	－117．22800	30.18480	084	－238．3239	1.8778
	125.00	124.52800°	20．98e．04	021	8.3255	242.7305
	120.00	36.6 ¢ 405	30．0e169	i．CD2	－81．7160	155.4440
Tamhane						
（1）Condition		M位系 Difference （I－J）	S：c．Error	Sig．	65\％Confitence Interval	
	（Ji Condition				Lower Bound	Upper Bound
10400	18.00	175．780003	32.14884	． 00	48.6503	392.5887
	20.00	42.94000	32．6Ec83	$1 . \mathrm{COD}$	－85．8533	171.7338
	22.00	－149．52403	32.57445	． 003	－279．0373	－21．0107
	25.00	－54．2ecos	34.7 e 422	1.000	－181．3883	82.8783
	28.00	－134．7e403＊	32.58622	． 024	－283．8978	－5．8301
	28.00	－103．85205	25.54233	． 168	－223．4543	0．7E0s
	32.00	80．5700	32.34867	989	－47．0283	208.1803
	3.00	－10．02400	33.32283	1.003	－147．7e40	115．580
	38.00	－8．50403	32.97205	1.000	－133．eer 1	121.6 ec 1
	48.00	t20．3Eens	32.14382	107	－8．4418	247.1538
	E2．00	－122．12400	31.51882	．c8s	－245．4700	2.2220
	E4．00	－100．21e00	33.08 e 65	440	－230．7273	21.2959
	57.00	－37．4e005	33.12188	1.600	－183．1112	83.1612
	Ee．00	－153．8320 ${ }^{\text {－}}$	33.38020	． CO 2	－287．7227	－24．5413
	eg．00	－137．92009	25.70208	CD1	－249．6251	－23．9148
	84．00	13．7240J	30.3 ecos	1.005	－105．1522	$133 . \operatorname{ccs} 2$
	72.00	35.54200	33.44 CB 1	1.000	－89．3807	187.4587
	81.00	－32．3ecos	32.95367	1.005	－182．3477	97.2277
	82.00	－220．23200	33．34e 2.2	．cos	－363．6790	－83．4944
	8． 00	－210．43egs	29.68422	． 0.0	－323．3734	－82．4985
	ع8．00	－87．64903	31.61224	． 683	－213．1684	37.2624
	01.00	－88．40e0	33.10537	． 685	－215．6¢37	44.1777
	02.00	－221．12409	33.58431	． 005	－354．68¢0	－82．e480
	83.00	43.04403	32.68 C 85	$1 . C D J$	－8．5．888	171．858
	E4．00	47.64000	$31.58 ¢ 88$	3.000	－172．3000	77.0200
	113.00	－144．04403	32．68e48	cos	－273．7870	－14．3210
	114.00	－234．0ccos	33.78 .317	． 60.3	－367．2589	－100．7401
	118.00	－178．6ecoj＊	25.15817	． 605	－288．1681	－85．5838
	120.00	－143．95200	32．58782	． 607	－272．4887	－15．4053
	123.00	－21．9720］	33.08721	9.005	－1E2．48．1	$10 \mathrm{SE421}$
	124.00	－164．86909	32．00203	． 600	－281．1123	－35．e232
	126.00	78.80 .800	31.72710	1000	－48．ec81	202.2841
	120.00	－10．77e0	31.67737	1.605	－135．6267	114.6747

（1）Condition	（J）Condition	Mean Difference （i－J）	S：c．Error	Sig．	85\％Confidence Interusl	
					Lower Bound	Upper Bound
113.00	18.00	318.60400°	31.68481	000	124.8203	444.7877
	20.00	188．98．403＊	32．19687	000	59.9855	313.8922
	22.90	－5．4ec00	32．1228．5	$1 . \mathrm{CEO}$	－132．1835	121.2335
	25.20	82.78400	34.32743	994	－4．e．744	225.2424
	28.50	8.28 coj	32.23163	$\bigcirc .000$	－117．8e04	138.42 D 4
	28.90	37.19200	$29.02 \mathrm{g85}$	1．c00	－77．4112	151.7652
	32.90	$224.6200{ }^{4}$	31.88847	．003	83.8284	351.4108
	3 e .00	127．gecd	32.998 .45	083	－1．gees	257.8888
	38.30	135．54CDJ	32.52275	． 020	7.2825	263.2275
	42.30	284．46009	31.68155	005	132.4284	389.3718
	52.30	21.92000	31.048 .57	1.005	－100．5005	144．40．09
	E4．50	34.82205	32.63784	T．C03	－03．6139	$183.5 \mathrm{e日g}$
	E7．00	106.58400	32.57373	485	－22．2689	235.4871
	52.00	－12．08800	32.91521	¢．COD	－141．8243	117.7483
	ec．00	6.12400	27.57333	－ C COJ	－102．7725	115.0205
	e4．00	157．7eedo ${ }^{2}$	22.68 C 59	cos	32.8323	275.7037
	72.00	178．54200	32.988 .91	CDJ	48.4231	399．760日
	81.00	111.68405	32．50312	． 302	－18．5259	239．8939
	82.00	－85．9880］	32.09855	695	－214．1ego	43.7930
	88.00	－98．39200	22.38 e85	$1 . C 05$	－182．3E44	48.5704
	88．00	53.35800	31.34835	3.000	－67．2079	180．cese
	81.00	57.83 e00	32．68e91	4.600	－71．1905	186.4528
	92.00	－78．08003	33.14233	i．cos	－203．8133	52．ec33
	93.00	187.08900°	32.22 EF 5	cos	52.8 era	314.2071
	Q4．00	85.40400	31.12972	． 687	－26．3853	2102038
	104.00	144．04403＊	32．09e48	009	14.2210	273.7870
	114.00	－88．9Eeto	33.34383	． 893	－221．485．3	41.5733
	118.00	－32．61200	$2 \overline{764 \% 81}$	1.000	－142．0C85	78.3775
	120.00	．09203	32.13223	1.000	－128．e553	128.8383
	123.00	122.05200	32．628．50	． 102	－8．8729	250．ete1
	124.00	－20．62403	31.538 .85	3.60	－145．2339	103．5859
	125.00	$220.9320{ }^{\circ}$	31.31888	． 00	87.3841	344.4788
	128.00	$133.2680{ }^{*}$	31.41138	0.15	Q．3ej	257．17¢
Tamhane						
il）Condition		Mean Difference		5.1	65s\％Cenfidence Interval	
	（J）Cendition	（ $1-\mathrm{J}$ ）	S：d．Error		Lawer Bound	Upper Bound
114.00	18.00	$400.7 \mathrm{Cc} 5^{*}$	32.01435	CDO	251.1004	538.4106
	20.00	278．64003＊	33.11125	CDJ	143.3262	407.5539
	22.00	84.47 ed	33.04103	695	45.8615	214.9135
	25.00	173．74005＊	35.19716	000	40.8990	313．Ead
	20.00	92．23e03	33.14832	203	－31．5159	220.6878
	28.00	123．1480．0	30.05685	0.019	8.5255	245.7705
	22.00	314.57800^{*}	32.61340	000	155.1338	444.0181
	38.00	217．91203＊	33.63348	003	84.4679	351.3741
	38.00	$225.48 \mathrm{ecj*}$	33.42821	005	63.8205	357.2815
	48.00	$354.3520{ }^{*}$	32.61139	C03	225.7081	483.0039
	E2．00	111．87e03	31.98878	251	－14．3E84	233.1104
	E4．00	124.78400	33.54126	． 117	－7．5223	257.0609
	67.00	106．54009	$33.57 \mathrm{CD日}$	000	64．CE85	323．9840
	58.00	77.8 eens	33.61113	－．cos	－6．5．E021	211.2381
	e0．00	08．02c0，	25.63 ed 1	385	－17．CED7	200.2107
	e4．00	247.72400°	30.8744 .3	C0J	125.8856	350.5624
	72.00	20．0．54203	33.88 C 95	． 003	135．8844	403.2315
	21．00	$201.5400{ }^{*}$	33.41003	．CDS	02．8498	333.4302
	22.00	4．76e0d	33．60022	®．CDJ	－127．7711	137.3071
	2e．00	23.58400	30.32878	S．COD	－88．3883	143.4873
	28.00	148．35200	32.28874	． 004	1.5 .8718	273.7324
	81.00	147．58203	$33.54{ }^{\text {c }}$ 72	． 027	15.2125	279.9715
	92.00	11.87 eas	34.03227	－． 000	－122．3858	148.1178
	E2．00	277.04400^{*}	33.74107	．c．J	1493128	497.7752
	94.00	188．38005	32.07565	． 005	50.2185	312.9034
	104.00	234.00003	33.78 .317	． 005	10.7 .7401	387.2689
	113.00	89.95000	33.34383	． 883	－1．6733	221.4863
	118.00	67．3400	28.71 C31	9．003	－56．2760	170.6680
	120.00	89.04803	33.04633	． 677	－ 0.3223	230.4184
	123.00	212.02035	33.54180	． 005	70.7181	3443389
	124.00	80．13203	32.47281	－．C03	－55．6714	187.2354
	126.00	310.68293	32.20011	．COJ	193.2200	433.1580
	129.00	223．2240．9	32.34967	cos	85.0071	350.8409

（i）Condition	（J）Condition	\qquad	Stci Error	Sig．	95\％Confidence Interval	
					Lower Bound	Upper Bound
118．00	16.00	352.52000^{*}	29.78 .570	． 00	248.8444	458.2856
	20.00	$210.50000 \times$	27．3ego	． 005	111.7244	327.8758
	22.00	27.33 e 00	27.28400	1.000	－80．4614	135.0734
	25.00	122．60c03＊	27.8 E872	． 027	4.6107	240.5893
	28.00	42．0sed	27．41149	1.005	－83．1483	150.3403
	28.00	70.00800	23.57432	． 823	－22．6973	163.0133
	3.2 .00	257．43edo	27.00780	． 005	150.7970	394.0750
	3 e .00	180．75e0\％	23.23244	cos	40.2392	272.3121
	38.00	105．35e03	27．7E282	． 605	53.7 E30	277.6500
	48.90	297．2180J＊	28.78203	． 005	111.5548	402.8772
	52.00	54．73edo	28.00684	1.005	47.9337	157.4057
	E4．00	87.64400	27.88789	3 CDS	－ 2.4858	177.7838
	57.00	138．46cos＊	27.92953	cos	22.6835	248.708 .5
	58.00	20.72800	23.21189	－ 8.603	－83．7015	132.1575
	0.000	39.94600	21.74350	3.603	－6．2282	124．7082
	64.50	180.58400^{*}	24.51687	003	03.4484	287.7188
	72.00	212.40800^{*}	29．36e05	． 003	$100 . E 692$	324.2188
	81.00	144．50003＊	27.72975	cos	34.9887	254.0113
	82.00	－52．3720］	27.05957	1.003	－182．763：	53.0483
	88.00	－33．57e00	24.00131	1.005	－123．2733	81.1213
	88.00	80.21200	28.38797	－354	－14．8821	193．3091
	91.00	60.46200	27.90883	514	－18．7782	200.6892
	82.00	45.26400	29．47835	1.05	－157．7472	67.2182
	92.00	219.90400°	27．40E07	．cog	111.8848	328.1231
	64．00	129．22000	28.30447	Col	28.1655	232.2745
	104.00	179．6ecos	29.17817	COD	85.5 e 3 g	288.1581
	113.00	32.51005	27.54801	1.609	－78．3775	142.0605
	114.00	－57．14000	23．71C81	$1 . C D D$	－170．EE80	55.2780
	120.00	3296000	27.28411	－CDS	－74．Ee89	140.8256
	123.00	1E4．cead ${ }^{\circ}$	27.68934	cas	44.74 Es	285.0304
	124.00	11.96205	20.59305	1．C03	－02．9970	116.6810
	125.00	253．74800	26.33290	．caj	142.7934	357.7026
	128.00	185．09400＊	28.44182	cas	$81 . \mathrm{eces}$	270.4712

Tamhane

（1）Condition	（Ji Condition	\qquad	Stc．Error	Sig．	859b Confidence Interval	
					Lewer Eound	Upper Eound
120.00	10.00	$318.7120{ }^{\circ}$	31.3748 g	000	185.9527	443.4713
	20.00	188．69203＇	31.69083	cos	81.0973	312 eest
	22.00	－5．57200	31.67781	－cos	－131．0781	118.8351
	25.00	82.68205	34.05158	． 693	－4．6．433	224.0278
	20.00	8.18800	31.92723	1．cod	－116．7503	135.1283
	28.00	37.10005	23.70037	1.005	－76．1E91	150.3501
	32．00	224．5290］	31.58147	CDI	92.8533	349.1027
	28.00	127.6 eg 00	$32.64 \mathrm{CD4}$	ces	－． 6848	258.6208
	30.00	135．44203＊	$32.22 \mathrm{C83}$	． 017	8.3510	292.6453
	48.00	284．30909	31.37151	．cos	140．E008	388.0551
	52.00	21．82eno	30.73214	i． 600	－90．4015	143.0575
	E4．90	$34.73 \mathrm{eg} ~$	32.33708	－． 005	－82．810日	182.2918
	57.00	100.40205	32.37318	463	－21．2686	234.1905
	58.00	－12．98003	32.51 eb	；COD	－140．8412	118.4812
	ec． 00	6.03203	27.21659	$3 . \mathrm{CED}$	－101．4445	113.8085
	e4．00	157．57809	23.56 .185	00.3	41.0437	$274.3 \mathrm{Ca3}$
	72.00	178．50c03＊	$32.69 ¢ 34$	CEJ	50.6131	308.4268
	81.00	111.5820 J	32.20 ces	278	－15．4287	238.6107
	82.00	－85．28［0］	32.38822	． 983	－213．0774	42.5174
	88.00	－68．42405	29.05212	－ CaJ	－181．1191	49.1511
	88.00	58.30405	31.03 ± 98	－CDJ	－85．1214	178.7294
	81.00	57.54405	$32.3 E \mathrm{e} 21$	－ 0.05	－70．0876	155.1756
	92.00	－78．73200	$32.84 \mathrm{en9}$	$\bigcirc .000$	－207．7387	$51.30 ¢ 7$
	02.00	188．g¢epg	31.82178	cos	81.0781	312.9129
	04.00	88.31200	$3 \pm .61413$	． 652	－25．2401	217.2 e 41
	$16 \div .00$	143．95209	32.58 .782	cot	15.4053	272.4887
	113.00	－．0920	32.13223	3．CDJ	－126．8393	126.655
	$11 \div 00$	－90．04800	33.04533	． 877	－22J．4184	40.3224
	118.00	－32．90000	27.28411	\％．CDJ	－140．685s	74.8898
	123.00	121．4ectu	32．3．63	L6\％	－9．E＊82	248．6コ⿺：
	124.00	－20．91805	31.22 .74	－CDO	－144．C855	132.283 .5
	125.00	220．64cos＊	31.00620	cod	$85 . \mathrm{E2} 19$	343.1482
	126.00	133．97C0．j	31.09885	C12	10.5039	255.8482

(i) Condition	(J) Condition	Mean Difference (I-J)	Sisi. Error	Sig.	95\% Confidence Interval	
					Lower Eaund	Upper Bound
123.00	18.50	$187.7320{ }^{*}$	31.68288	000	71.8254	323.5288
	20.00	64.91200	32.40686	T.CDJ	-92.8954	122.7164
	22.00	-127.56203	32.32808	C6J	-265.0765	. 0275
	25.00	-32.2808	34.52871	i.cod	-189.5021	103.8201
	28.00	- 112.79200	32.42e89	. 285	-240.7403	15.1683
	28.00	-84.89CDJ	20.2eeos	. 289	-200.3951	30.8251
	32.00	102.5480 J	32.09842	. 683	-24.0edd	22. 11060
	38.00	5.68205	33.13855	1.600	-124.8285	136.6C4 5
	28.00	13.48200	32.72572	$\square \mathrm{COS}$	-115.8200	142.5565
	48.00	142.32a09*	31.68985	cos	18.5333	285.1227
	52.00	-10..5200	31.28109	553	-223.4733	23.168
	54.00	-87.24403	32.64 C 17	.98.	-210.7834	42.2854
	57.00	-15.49800	32.67574	4.60	-145.1878	114.1 .818
	58.00	-134.1ecos*	33.11675	. 033	-264.7263	-3.5332
	e0.jo	-115.94903*	27.61247	. 021	-225.79e1	-8.098日
	e4.00	35.69 ec	30.11137	1.009	-83.1147	154.5687
	72.00	57.52C0]	33.19e85	- COD	-73.4273	188.4673
	81.00	-10.3e80	32.7Ce19	$\bigcirc .000$	-132.3983	118.8230
	82.00	-207.2ects*	32.90038	.c00	-337.0370	-77.4833
	88.00	-188.48409	28.61102	.coj	-305.3171	-71.8108
	88.00	-85.67600	31.56984	1.600	-180.1722	58.8202
	61.00	-84.43e00	32.65603	-.CDJ	-194.c483	65.1778
	92.00	-209.7e209	33.34151	005	-331.e888	-63.6341
	93.00	85.01e8s	32.42133	$\bigcirc 005$	-82.8114	182.8434
	64.00	-25.5e803	31.34168	$1 . \mathrm{Cas}$	-148.2C64	87.9704
	104.00	21.97203	33.02721	3.003	-103.E421	152.4801
	113.00	-122.0720	32.63850	.108	-250.8181	6.8721
	114.00	-212.02803	33.54185	CDO	-344.336日	-72.7101
	118.00	-154.88805	27.888 .34	cos	-285.0304	44.7466
	120.00	-121.98CD	32.33763	C97	-249.5382	5.5782
	124.00	-142.68edo	31.74813	. 605	-285.1329	-17.8681
	125.00	88.6 ecoj	31.53 C 55	esto	-25.E20	223.2400
	128.00	11.19ed	$31.821 \div 8$	$1 . C D J$	-113.E425	135.9345

Tamhane

(1) Condition	iji Condition	\qquad	Sto. Error	58.	85\% Sonfidence Interyal	
					Lower Bound	Upper Bound
124.00	12.00	340.62000*	30.76 e85	COD	218.2675	481.9885
	20.00	$207.8020{ }^{\text {a }}$	31.28281	0 cJ	843 3¢	331.2481
	22.00	15.34400	31.21280	- 000	-107.ecis	138.4889
	25.00	110.6080	33.48226	439	-21.5330	242.7490
	28.00	30.1040 J	$31.33 \mathrm{CD1}$	T.CDJ	-83.4e08	153.8888
	28.00	6s.0tesj	28.03448	4.603	-52.6011	185.6331
	32.00	245.44403*	30.97758	CDJ	123.2511	387.6389
	38.00	148.78403'	32.05 e 11	. CO 2	22.3293	275.2387
	38.00	165.38409"	31.62815	001	31.6874	251.1308
	48.00	285.22400*	30.76350	. 005	163.8765	406.5720
	52.00	42.74400	30.11122	7.000	-76.0321	161.6201
	54.00	55.85200	31.74755	0.000	-68.6825	150.8988
	57.00	125.40805*	31.72435	c38	2.6278	252.7889
	58.00	9.72 eog	32.03254	-.C0]	-117.8255	135.0975
	80.00	28.94805	28.51347	8.605	-77.73.14	131.2274
	64.00	179.59209	28.91583	cos	84.518 .5	282.8655
	72.00	$200.4100{ }^{*}$	32.11849	COJ	73.7225	327.1685
	81.00	132.5080J*	31.80884	. 018	7.8213	257.1847
	82.00	-84.3e405	$31.80 ¢ 84$	3.000	-189.8440	81.1189
	88.00	45.5880	25.38449	3.000	-157.5857	88.4597
	98.00	77.22005	30.42129	. 988	- 4.7782	107.2182
	g 1.00	78.48 CoD	31.78708	3.603	49.8517	203.7717
	92.00	-67.2ee00	32.2e687	1.600	-184.5405	70.0285
	92.00	207.91203*	31.32448	COJ	84.2483	331.4747
	94.00	117.22200	30.19403	. 664	-1.8778	236.3338
	104.00	184.6e200*	32.06303	cos	35.8232	281.1128
	113.00	20.82400	31.53885	-.cos	-103.6858	145.2238
	114.00	-86.1320]	32.47281	1.COJ	-187.2354	53.8714
	118.00	-11.0920J	28.58305	1.CDS	-118.9810	82.9670
	120.00	20.91000	31.22744	3.605	-102.2835	144.0955
	123.00	142.5Ged)*	31.74813	. 60.5	17.e581	259.1329
	125.00	241.75e03*	30.36088	.cos	121.8777	381.8343
	128.00	154.09202*	30.48620	CDJ	33.2418	274.3422

(1) Condition	(J) Condition	\qquad Difference ($1-\mathrm{J}$)	S.c. Error	38.	95\% Contidence interval	
					Lower Bound	Upper Bound
125.00	18.00	08.87205	30.54203	. 515	-21.e31	210.3471
	20.00	-33.94e0j	31.07214	-.c30	-155.5187	89.8207
	22.00	-228.41203*	30.98730	.000	-343.8850	-104.1380
	25.00	-131.14802	33.28803	$0 ¢ 1$	-282.4808	. 1849
	2e.00	-211.65203	31.10850	.cos	-334.3e84	-85.9353
	28.00	-183.74CD3*	27.78785	. 0.0	-283.3789	.74.1010
	32.00	3.58200	30.75465	3.005	-117.e281	125.0021
	3 e .00	-02.9720	31.84 Ce 3	. 872	-215.6788	32.8359
	38.00	-85.3E20	31.41074	. 978	-202.2892	39.6152
	48.00	43.48200	30.53893	3.000	-78.684	193.9208
	E2.00	-100.01200*	28.68172	.	-315.8821	-81.1410
	54.00	-186.10403	31.52895	.003	-310.4923	-81.7254
	57.00	-114.3480]	31.58702	. 185	-239.8732	10.1572
	E8.00	-233.02009*	31.61893	cos	-359.5337	-107 Ece3
	ec.00	-214.80809	20.25253	COD	-318.4497	-111.1483
	e4.00	-63.7e405	23.07676	$\bigcirc .003$	-176.2612	42.8632
	72.00	41.34000	31.90141	- Cas	-187.1881	84.6 cal
	91.00	-100.24000	31.36638	. 284	-233.0747	14.6787
	82.00	-200.12005*	31.59285	cos	430.7487	-181.4933
	عe.00	-287.32403*	29.35100	cos	-383.3888	-176.2811
	88.00	-184.53e03	30.18413	.cos	-283.6280	-454240
	E1.00	-183.29e03*	31.548 El	. 00	-287.7523	-38.8297
	-2.00	-288.01203*	32.06103	00.0	-25.4553	-172.5e87
	93.00	-33.54400	31.70381	+Cos	-158.5383	88.8E03
	64.00	-124.52009*	20.92804	. 21	-242.7305	-8.3255
	10.400	-78.6ega	31.78710	¢.cos	-202.2949	49.6081
	113.00	-220.93203*	31.31888	. 005	-344.476日	-87.384 1
	114.00	-310.69803*	32.2e011	cos	-39.1680	-183.e200
	118.00	-253.74803*	25.32280	.cos	-357.7026	-149.7934
	120.00	-220.34c03*	31.00 e 20	cos	-343.1482	-88.5318
	123.00	-88.3ecd	31.53055	. 85	-223.2408	25.5208
	124.00	-241.7E009*	30.38089	c.0	-381.e243	-121.8777
Tamhane						
ia) Condition	i, ${ }^{\text {a }}$ Cardition	Mean Difference (I-J)	Stei. Etror	5 S	65\% Confitence Interval	
					Lower Bound	Upper Bound
125.00	126.00	-87.50.405	30.25853	800	-207.0201	31.6921
123.00	18.00	188.53eDs	30.63583	. 0.0	25.8810	307.2810
	20.00	53.71603	31.18432	1. CDD	-80.2158	178.8470
	22.00	-135.74803*	31.08977	CDS	-281.3851	-18.1108
	25.00	-3.42405	33.37221	1.005	-175.1545	89.1885
	28.00	-123.58909	31.20184	. 045	-247.0671	-9C8E
	2 e .90	-98.07ed	$27.8 E C 88$	285	-203.1230	13.9718
	32.00	81.35203	30.64775	. 235	-30.3283	213.0333
	3 c .00	-6.3020]	$31.93 C 88$	7.003	-131.2eg5	120.6635
	38.00	2.2720 J	31.50201	-. 600	-121.9842	123.5.882
	42.00	131.13203 ${ }^{\circ}$	30.63278	. 012	10.2985	254.6245
	52.00	-111.3490J	23.97764	113	-229.5867	8.8037
	E4.00	-88.44CD5	31.62083	.es7	-223.1702	20.2682
	67.00	-26.3940	31.65783	7.003	-151.6eb3	98.1083
	58.00	-145.3Eed'	31.90700	. 004	-271.2233	-18.4e81
	ceso	-127.14403	20.30183	.ca1	-231.2188	-23.ce84
	84.00	24.50C0J	$28.77 \mathrm{CB3}$	7.605	-8: 0227	138.0227
	72.00	-5.3240J	31.94127	1.005	-79.2773	172.5253
	91.00	-21.59.400	31.48171	1.000	-145.7700	102.e020
	82.00	-213.4Eeds	31.68342	cos	-343.4385	-83.4725
	38.00	-188.secas	23.2627 .8	cos	-311.1282	-88.1839
	88.00	-78.5720	30.28689	. 998	-198.3485	42.8045
	91.00	-75.3220	$31.84 \mathrm{C47}$	9.CDO	-200.4457	49.1817
	92.00	-211.34830	32.34124	CDO	-335.1427	-84.5533
	83.00	63. c 2 CO	31.3 geat	T. CDS	-68.2371	178.8771
	84.00	-38.ze405	$30.0{ }^{168}$	1.600	-155.44<0	81.7180
	104.00	10.77eas	31.67737	1.600	-114.9747	138.5287
	113.00	-133.28803	31.41 139	. 015	-257.1769	-2.3e0s
	114.00	-223.22405 ${ }^{2}$	32.34997	cco	-353.2403	-95.e671
	118.00	-188.08403*	28.44108	cos	-270.4712	-81.e¢8s
	120.00	-133.77eds	31.0898 .5	. 612	-265.2482	-10.E633
	123.00	-11.seedo	31.62148	1.000	-135.9345	113.5425
	124.00	-154.08203*	30.42520	cos	-274.3422	-33.8.415
	125.00	87.8e.403	30.25853	860	-31.e821	207.0201

M. VARIATION OF WINDOW OF OPPORTUNITY FOR CONDITION 15

Condition	Time	Condition	Time	Condition	Time	Condition	Time
5	1619	45	918	85	1311	125	1120
6	1673	46	1283	86	1278	126	1279
7	1443	47	1158	87	1196	127	1043
8	1329	48	1382	88	1304	128	1586
9	1527	49	1445	89	1377	129	1124
10	1384	50	1312	90	1269	130	1344
11	1916	51	1169	91	1190	131	1504
12	1332	52	1334	92	1318	132	1164
13	1265	53	1378	93	1219	133	1228
14	1356	54	1124	94	1238	134	1263
15	1511	55	1280	95	1118	135	1456
16	1364	56	1258	96	1259	136	1499
17	1320	57	1445	97	1323	137	1352
18	1590	58	1288	98	1175	138	1403
19	1006	59	1185	99	1345	139	1203
20	1413	60	1372	100	1116	140	1142
21	1131	61	1367	101	1099	141	1240
22	1324	62	1315	102	1375	142	1160
23	1355	63	1349	103	1324	143	1141
24	1272	64	1113	104	1152	144	1278
25	1275	65	1137	105	1225	145	1342
26	1182	66	1337	106	1446	146	958.7
27	1216	67	1300	107	1200	147	1295
28	1520	68	1227	108	1105	148	1424
29	1190	69	1248	109	1538	149	1259
30	1339	70	1336	110	1213	150	1384
31	1261	71	1365	111	1329	151	1282
32	1281	72	1286	112	1186	152	1348
33	1281	73	1379	113	1287	153	1234
34	1255	74	1397	114	1177	154	1428
35	1310	75	1404	115	1239	155	1408
36	1327	76	1622	116	1230	156	1443
37	1721	77	1400	117	1365	157	1024
38	1264	78	1310	118	1237	158	1372
39	1122	79	1495	119	1436	159	1393
40	1373	80	1339	120	1148	160	1296
41	1294	81	1390	121	1352		
42	,1120	82	1449	122	1407		
43	1236	83	1193	123	1536		
44	1430	84	1328	124	1245		

VITA

Jose J. Padilla

Engineering Management and Systems Engineering Department

Jose J. Padilla received his Master of Business Administration degree from Lynn University, Boca Raton, FI. in 2003 and his Bachelor's degree in Industrial Engineering from La Universidad Nacional de Colombia, Medellin, Colombia in 1997. He has served as a graduate research assistant for the Engineering Management and Systems Engineering (EMSE) Department at Old Dominion University, Norfolk, VA. Jose J. Padilla has been a member of the research team in The National Centers for System of Systems Engineering (NCSOSE) within the EMSE Department. His research interests are focused on understanding, philosophy of science, and the use of M\&S for theory building.

[^0]: ${ }^{1}$ Please refer to Rittel and Webber (1973) for the list and an explanation of these characteristics

[^1]: ${ }^{2}$ A task environment is effectively fully observable if the sensors detect all aspects that are relevant to the choice of action; relevance, in turn depends on the performance measure (Rusell \& Norvig, 2003, p. 41). They state that little unobservability can cause serious trouble when using this kind of agent given that they would run into infinite loops. Reason why, randomizing their next step is needed.
 ${ }^{3}$ For a full description on these task environments, please refer to Russel and Norvig, (2003, p. 40-43)

[^2]: ${ }^{4}$ The remainder of the data analysis can be found in Appendix D.

